Cho tam vuong ABC , duong trung tuyến AM. Gọi N la điểm đối xứng voi M qua AB.
a) CMR: tg AMBN la hinh thoi
b) Cho AB=6cm, AC=8cm . Tính diện tích tg AMBN
c) Tam giác ABC có thêm điền kiện gì để hình thoi AMGN la hình vuông?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ANMC có
MN//AC
MN=AC
Do đó: ANMC là hình bình hành
a) \(\Delta ABC\) vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\) (định lý Pytago)
\(\Rightarrow BC^2=6^2+8^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\) (cm)
Do AM là đường trung tuyến ứng với cạnh huyền BC
\(\Rightarrow AM=\dfrac{BC}{2}=\dfrac{10}{2}=5\) (cm)
b) Do M và N đối xứng nhau qua \(I\)
\(\Rightarrow I\) là trung điểm của MN
Mà \(I\) là trung điểm của AB (gt)
\(\Rightarrow\) AMBN là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
Do M là trung điểm BC (AM là đường trung tuyến ứng với BC)
\(I\) là trung điểm AB (gt)
\(\Rightarrow\) MI // BC
Mà BC \(\perp\) AB (\(\Delta\)ABC vuông tại A)
\(\Rightarrow MI\perp AB\)
\(\Rightarrow MN\perp AB\)
Hình bình hành AMBN có \(MN\perp AB\) nên AMBN là hình thoi
c) Để AMBN là hình vuông thì AM \(\perp\) BM
\(\Rightarrow\) AM \(\perp\) BC
\(\Rightarrow\) AM là đường cao của \(\Delta ABC\)
Mà AM là đường trung tuyến ứng với BC
\(\Rightarrow\) \(\Delta ABC\) cân tại A (vì có AM là đường trung tuyến và AM là đường cao)
\(\Rightarrow\) \(\Delta ABC\) vuông cân tại A
Vậy để AMBN là hình vuông thì \(\Delta ABC\) vuông cân tại A
a: M đối xứng N qua AB
nên AM=AN; BM=BN
mà MA=MB
nên MA=MB=AN=BN
=>AMBN là hình thoi
b: Xét tứ giác ACMN có
AN//CM
AN=CM
Do đó: ACMN là hình bình hành
=>AM cắt CN tại trung điểm của mỗi dường
=>N,I,C thẳng hàng
c: BC=2*AM=10cm
=>AB=8cm
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)