K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

a: Xét tứ giác ANMC có

MN//AC

MN=AC

Do đó: ANMC là hình bình hành

31 tháng 12 2020

 

undefined

a) \(\Delta ABC\) vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2\) (định lý Pytago)

\(\Rightarrow BC^2=6^2+8^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\) (cm)

Do AM là đường trung tuyến ứng với cạnh huyền BC

\(\Rightarrow AM=\dfrac{BC}{2}=\dfrac{10}{2}=5\) (cm)

b) Do M và N đối xứng nhau qua \(I\)

\(\Rightarrow I\) là trung điểm của MN

\(I\) là trung điểm của AB (gt)

\(\Rightarrow\) AMBN là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

Do M là trung điểm BC (AM là đường trung tuyến ứng với BC)

\(I\) là trung điểm AB (gt)

\(\Rightarrow\) MI // BC

Mà BC \(\perp\) AB (\(\Delta\)ABC vuông tại A)

\(\Rightarrow MI\perp AB\)

\(\Rightarrow MN\perp AB\)

Hình bình hành AMBN có \(MN\perp AB\) nên AMBN là hình thoi

 

 

31 tháng 12 2020

c) Để AMBN là hình vuông thì AM \(\perp\) BM

\(\Rightarrow\) AM \(\perp\) BC

\(\Rightarrow\) AM là đường cao của \(\Delta ABC\)

Mà AM là đường trung tuyến ứng với BC

\(\Rightarrow\) \(\Delta ABC\) cân tại A (vì có AM là đường trung tuyến và AM là đường cao)

\(\Rightarrow\) \(\Delta ABC\) vuông cân tại A

Vậy để AMBN là hình vuông thì \(\Delta ABC\) vuông cân tại A

20 tháng 12 2022

a: M đối xứng N qua AB

nên AM=AN; BM=BN

mà MA=MB

nên MA=MB=AN=BN

=>AMBN là hình thoi

b: Xét tứ giác ACMN có

AN//CM

AN=CM

Do đó: ACMN là hình bình hành

=>AM cắt CN tại trung điểm của mỗi dường

=>N,I,C thẳng hàng

c: BC=2*AM=10cm

=>AB=8cm

\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)