M có là số chính phương không nếu :
M = 1 + 3 + 5 + ... + ( 2n - 1 ) ( Với \(n\in N;n\ne0\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=1+3+5+...+(2n-1)
=[(2n-1)+1]×n/2
=2n^2/2=n^2
=> M là số chính phương.
Trong tổng trên có số số hạng là :
( 2n - 1 - 1 ) : 2 + 1 = n ( số hạng )
=> M = ( 2n - 1 + 1 ) . n/2 = 2n.n/2 = n^2
=> M = số chính phương
Hok tốt ^^
Số số hạng của M là : [(2n-1)-1]: 2+1=n^2
Tổng M là:(2n-1+1).n:2=n^2
=>M là số chính phương
M= 1+3+5+...+(2n-1)
=[(2n-1)+1]×n]/2
=2n^2/2=n^2
=> M là số chính phương.
Số số hạng của tổng M là :
[(2n-1)-1] : 2+1
=(2n-2) :2+1
=2(n-1):2+1
=n-1+1
=n (số hạng)
=> M= (2n-1+1) n: 2
=> 2n.n:2
=>n.n=n^2
=> M là số chính phương
từ đoạn suy ra là ko hịu chi lun