K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

 Câu trả lời đây bạn:

Ta có:

x^2+xy=7

=>xx+xy=7

=>x(x+y)=7

Mà 7=1.7=(-1).(-7)

Nên ta có bảng sau:

x17-1-7
x+y71-7-1
y6-6-66

Thử lại ta có : Các cặp (x,y) thỏa mãn điều kiện đề bài là:(1:6);(7:-6);(-1;-6);(-7;6).

13 tháng 12 2021

ko có

17 tháng 12 2021

giúp mik vs :(

 

17 tháng 12 2021

Do 103 là số nguyên tố nên không chia hết cho 2 

Mà 32y chia hết cho 2 nên \(5x^2⋮̸2\)

Mà 5 lẻ nên \(x^2\) lẻ

Do đó \(x^2\equiv1\left(mod4\right)\)

Lại có \(32y\equiv0\left(mod4\right)\Leftrightarrow5x^2-32y\equiv1\left(mod4\right)\)

Mà \(103\equiv3\left(mod4\right)\)

Vậy PT vô nghiệm

NV
26 tháng 11 2021

a.

\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)

Do y và y+1 nguyên tố cùng nhau  \(\Rightarrow32⋮\left(y+1\right)^2\)

\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)

\(\Rightarrow...\)

b.

\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)

\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)

Lại có:

\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)

\(\Rightarrow4b+1⋮d\) (2)

 (1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau

Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)

31 tháng 1 2017

Ta có:\(32⋮y\Rightarrow x\left(y+1\right)^2⋮y\) . Mà \(\left(y,y+1\right)=1\Rightarrow\left(y+1\right)^2\) \(⋮̸y\Rightarrow x⋮y\)

Đặt x=yt. Ta có: \(x\left(y+1\right)^2=32y\)

\(\Rightarrow yt\left(y+1\right)^2=32y\)

\(\Rightarrow t\left(y+1\right)^2=32\)

\(\Rightarrow\left(y+1\right)^2\) là Ư chính phương của 32

TH1\(\)\(\left\{\begin{matrix}t=32\\\left(y+1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}t=32\\y+1=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t=32\\y=0\end{matrix}\right.\)(loại vì \(y\in\) N*)

TH2\(\left\{\begin{matrix}t=2\\\left(y+1\right)^2=16\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}t=2\\y+1=4\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}t=2\\y+1=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t=2\\y=3\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=6\\y=3\end{matrix}\right.\)

TH3\(\left\{\begin{matrix}t=8\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}t=8\\y+1=2\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}t=8\\y+1=2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}t=8\\y=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=8\\y=1\end{matrix}\right.\)

Vậy có 2 cặp số x,y. Đó là (x=6,y=3) và (x=8,y=1)

25 tháng 10 2019

\(xy^2+2xy+x=32y\)

\(x\left(y+1\right)^2=32y\)

\(\Rightarrow x=\frac{32y}{\left(y+1\right)^2}\)

Vì \(\left(y,\left(y+1\right)^2\right)=1\)và \(x\inℤ\)\(\Rightarrow\left(y+1\right)^2\inƯ\left(32\right)=Ư\left(2^5\right)=\left\{2^2;2^4\right\}\)

\(Khi\left(y+1\right)^2=2^2=4\Rightarrow\orbr{\begin{cases}y+1=2\\y+1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-3\end{cases}}\)

\(\cdot y=1\Rightarrow x=\frac{32.1}{4}=8\)        

\(\cdot y=-3\Rightarrow x=\frac{32.\left(-3\right)}{4}=-24\)

\(Khi\left(y+1\right)^2=2^4=16\Rightarrow\orbr{\begin{cases}y+1=4\\y+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=3\\y=-5\end{cases}}}\)

\(\cdot y=3\Rightarrow x=\frac{32.3}{16}=6\)

\(\cdot y=-5\Rightarrow x=\frac{32.\left(-5\right)}{16}=-10\)

Vậy nghiệm phương trình \(\left(x;y\right)=\left(8;1\right);\left(-24;-3\right);\left(6;3\right);\left(-10;-5\right)\)

16 tháng 6 2017

X(y3 + 2y + 1) = 32y

Vì (y3 + 2y + 1; y) = 1 nen 32 \(⋮\)chia hết cho y3 + 2y + 1.

Đến đây tự giải nhé.

17 tháng 6 2017

ủa bạn cái đoạn \(\left(y^3+2y+1;y\right)=1\)   dấu chấm phẩy “;” nghĩa là sao ?