cho 0<=x<=3 vaf0<=y<=4, tìm max của A=(3-x)(4-y)(2x+3y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(C=\left(3-x\right)\left(1-y\right)\left(4x-7y\right)\)
\(\Leftrightarrow28C=\left(12-4x\right)\left(7-7y\right)\left(4x-7y\right)\)
\(\Leftrightarrow3.\sqrt[3]{28C}=3.\sqrt[3]{\left(12-4x\right)\left(7-7y\right)\left(4x-7y\right)}\)
\(\le12-4x+7-7y+4x-7y=19\)
\(\Leftrightarrow\sqrt[3]{28C}\le\frac{19}{3}\)
\(\Leftrightarrow28C\le\frac{19^3}{27}\)
\(\Leftrightarrow C\le\frac{19^3}{27.28}\)
\(\frac{4}{3}\ge x^2+y^2+z^2-x-y-z\ge\frac{1}{3}\left(x+y+z\right)^2-\left(x+y+z\right)\)
\(\Rightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)-4\le0\)
\(\Rightarrow\left(x+y+z+1\right)\left(x+y+z-4\right)\le0\)
\(\Rightarrow x+y+z\le4\)
\(A_{max}=4\) ; \(A_{min}\) ko tồn tại (chỉ tồn tại khi x;y;z là số thực bất kì, khi đó \(A_{min}=-1\))