cho a= 1+2+3...+n và b=2n+1
Chứng minh a và b là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài giải
Ta có: a = 1 + 2 + 3 + 4 +...+ n; b = 2n + 1 (n \(\inℕ\); n > 2)
Suy ra a = \(\frac{n\left(n+1\right)}{2}\)(a chẵn vì n > 2); b = 2n + 1 (b lẻ)
Vì n > 2
Nên a > 2 và b > 2
Mà a chẵn và b lẻ
Suy ra a không chia hết cho b và ngược lại
Vậy a và b là 2 số nguyên tố cùng nhau.
Gọi d là ước chung lớn nhất của a và b
\(\Rightarrow a⋮d;b⋮d\) \(\Rightarrow8a⋮d;b^2⋮d\) \(\Rightarrow b^2-8a⋮d\)
Ta có : \(a=1+2+3+...+n\)
\(\Rightarrow a=\frac{\left[\left(n-1\right)\div1+1\right]\left(n+1\right)}{2}\)
\(\Rightarrow a=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow a=\frac{n^2+n}{2}\)
\(\Rightarrow8a=\frac{n^2+n}{2}.8=4n^2+4n\) (1)
Ta có : \(b=2n+1\)
\(\Rightarrow b^2=\left(2n+1\right)^2=\left(2n+1\right)\left(2n+1\right)=4n^2+4n+1\) (2)
Từ (1) và (2) suy ra : \(b^2-8a=\left(4n^2+4n+1\right)-\left(4n^2+4n\right)=1\)
Mà \(b^2-8a⋮d\)
Do đó \(1⋮d\)
\(\Rightarrow d=1\)
Mà d là ước chung lớn nhất của a và b
Vậy a và b là 2 số nguyên tố cùng nhau