K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

C1.
     C/m phản chứng.
G/s ba biểu thức trên có cùng gt âm.
Từ biểu thức 1 => x3y4 dương, mà y4 luôn dương => x3 dương => x dương
Từ biểu thức 2 => x4y3 dương, mà x4 luôn dương => y3 dương => y dương
Thay x dương, y dương vào biểu thức 3 => 2xy dương, trái lại với đk 2xy âm
=> Vô lý => G/s của ta là sai hay ba biểu thức trên không thể có cùng gt âm
C2.
     Nhân cả 3 biểu thức vào được \({1\over{2}}x^8y^8\) , mà x8, y8 dương => \({1\over{2}}x^8y^8\) dương
Nếu cả 3 biểu thức trên đều âm => Tích của chúng là số âm => Vô lý với khẳng định trên
=> 3 biểu thức đó không thể có cùng giá trị âm

17 tháng 3 2017

Đến thứ 2 mình phải nộp bài rồi. Các bạn giúp  mình nha! 

NV
24 tháng 3 2019

1/ Với số dương ta luôn có \(\frac{x}{y}+\frac{y}{x}\ge2\) (Cauchy hoặc quy đồng chuyển vế sẽ chứng minh được dễ dàng). Ta cần chứng minh:

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2.\frac{x}{y}.\frac{y}{x}+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\) (1)

Đặt \(\frac{x}{y}+\frac{y}{x}=a\ge2\) thì (1) trở thành:

\(a^2+2\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\) (2)

Do \(a\ge2\Rightarrow\left\{{}\begin{matrix}a-1>0\\a-2\ge0\end{matrix}\right.\Rightarrow\left(a-1\right)\left(a-2\right)\ge0\)

\(\Rightarrow\left(2\right)\) đúng, vậy BĐT được chứng minh. Dấu "=" xảy ra khi \(x=y\)

2/ \(B=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+2045\)

\(B=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2-6y+12\right)-36+2045\)

\(B=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2009\)

\(B=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\)

Do \(\left\{{}\begin{matrix}\left(x-1\right)^2+2\ge2\\\left(y+3\right)^2+3\ge3\end{matrix}\right.\)

\(\Rightarrow B\ge2.3+2009=2015\)

\(\Rightarrow B_{min}=2015\) khi \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

a) các đơn thức: 2xy2 ; 5 

b) các đa thức: 2x + 3y ; x3y2 - 1

19 tháng 4 2016

a,các biểu thức là đơn thức là: 2xy2; 5

b,các biểu thức là đa thức nhung ko phải là đơn thức là: 2x+3y;

29 tháng 4 2017

Câu 1 :
 A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
 B = \(\frac{1}{2}\).  \(\frac{2}{3}\).  \(\frac{3}{4}\)+...+  \(\frac{2010}{2011}\).  \(\frac{2011}{2012}\)\(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)=  \(\frac{1}{2012}\)
Câu 2 :
 a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=>  \(3y-2;2x+1\in\: UC\left(-55\right)\)
=>  \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng 

BẢNG TÌM x;y
\(2x+1\) 1-1 5-511-1155-55
\(x\) 0-1 2-35-627-28
\(3y-2\)-5555-1111-55-11
\(3y\)-5357-913-3713
\(y\)\(\frac{-53}{3}\)(loại)19(chọn)-3(chọn)\(\frac{13}{3}\)(loại)-1(chọn)\(\frac{7}{3}\)(loại)\(\frac{1}{3}\)(loại)1(chọn)


\(\Leftrightarrow\)Những cặp (x;y) tìm được là : 
(-1;19)  ;   (2;-3)   ;    (5;-1)    ;    (-28;1)
b) Ta đặt vế đó là A
Ta xét A :   \(\frac{1}{4^2}\)<  \(\frac{1}{2.4}\)
                  \(\frac{1}{6^2}\)<  \(\frac{1}{4.6}\)
                  \(\frac{1}{8^2}\)<  \(\frac{1}{6.8}\)
                          ...
                 \(\frac{1}{\left(2n\right)^2}\)<  \(\frac{1}{\left(2n-2\right).2n}\)

  \(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+  \(\frac{1}{4.6}\)+...+  \(\frac{1}{\left(2n-2\right).2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+  \(\frac{2}{4.6}\)+...+  \(\frac{2}{\left(2n-2\right).2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{4}\)+  \(\frac{1}{4}\)-  \(\frac{1}{6}\)+...+  \(\frac{1}{2n-2}\)-  \(\frac{1}{2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{2n}\)) = \(\frac{1}{2}\).  \(\frac{1}{2}\)-  \(\frac{1}{2}\).  \(\frac{1}{2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{4}\)-  \(\frac{1}{4n}\)<  \(\frac{1}{4}\) ( Vì n \(\in\)N )
  \(\Leftrightarrow\)A <  \(\frac{1}{4}\)( đpcm ) .

29 tháng 4 2017

Bạn Phùng Quang Thịnh làm đúng hết rồi 

11 tháng 3 2017

Giả sử 3 đa thức trên cùng nhận giá trị âm với mọi x, y.
Ta có:     \(A.B.C\)\(=\left(16x^4-8x^3y+7x^2y^2-9y^4\right)+\left(-15x^4+3x^3y-5x^2y^2-6y^4\right)+\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4+5x^3y+3x^2y^2+17y^4+1\)
\(=\left(16x^4-15x^4\right)-\left(8x^3y-3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2+3x^2y^2\right)-\left(9y^4+6y^4-17y^4\right)+1\)
\(=x^4-0+5x^2y^2-2y^4+1\)
\(=x^4+5x^2y^2-2y^4+1\)

Ta thấy:        \(x^4\ge0\) \(\forall x\)   \(;\)         \(x^2y^2\ge0\)\(\forall x,y\)       \(;\)         \(y^4\ge0\)\(\forall y\)
     \(\Rightarrow\)\(\left(x^4+5x^2y^2-2y^4+1\right)\ge1\)                  \(\forall x,y\)
     \(\Rightarrow\)\(A.B.C\)nhận giá trị dương
     \(\Rightarrow\)3 đa thức trên không thể cùng nhận giá trị âm với mọi x, y 
      \(\Rightarrow\)\(dpcm\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) \({\left( {2x + 1} \right)^4} = {\left( {2x} \right)^4} + 4.{\left( {2x} \right)^3}{.1^1} + 6.{\left( {2x} \right)^2}{.1^2} + 4.\left( {2x} \right){.1^3} + {1^4} = 16{x^4} + 32{x^3} + 24{x^2} + 8x + 1\)

b) \(\begin{array}{l}{\left( {3y - 4} \right)^4} = {\left[ {3y + \left( { - 4} \right)} \right]^4} = {\left( {3y} \right)^4} + 4.{\left( {3y} \right)^3}.\left( { - 4} \right) + 6.{\left( {3y} \right)^2}.{\left( { - 4} \right)^2} + 4.{\left( {3y} \right)^1}{\left( { - 4} \right)^3} + {\left( { - 4} \right)^4}\\ = 81{y^4} - 432{y^3} + 864{y^2} - 768y + 256\end{array}\)

c) \({\left( {x + \frac{1}{2}} \right)^4} = {x^4} + 4.{x^3}.{\left( {\frac{1}{2}} \right)^1} + 6.{x^2}.{\left( {\frac{1}{2}} \right)^2} + 4.x.{\left( {\frac{1}{2}} \right)^3} + {\left( {\frac{1}{2}} \right)^4} = {x^4} + 2{x^3} + \frac{3}{2}{x^2} + \frac{1}{2}x + \frac{1}{{16}}\)

d) \(\begin{array}{l}{\left( {x - \frac{1}{3}} \right)^4} = {\left[ {x + \left( { - \frac{1}{3}} \right)} \right]^4} = {x^4} + 4.{x^3}.{\left( { - \frac{1}{3}} \right)^1} + 6.{x^2}.{\left( { - \frac{1}{3}} \right)^2} + 4.x.{\left( { - \frac{1}{3}} \right)^3} + {\left( { - \frac{1}{3}} \right)^4}\\ = {x^4} - \frac{4}{3}{x^3} + \frac{2}{3}{x^2} - \frac{4}{27}x + \frac{1}{{81}}\end{array}\)

11 tháng 2 2017

\(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x}{y}=\frac{2}{4}\Rightarrow x=2;y=4\)

Thế x;y vào biểu thức P ta có :

\(P=\frac{7x^2+3y^2}{14x^2-3y^2}=\frac{7\cdot2^2+3\cdot4^2}{14\cdot2^2-3\cdot4^2}=\frac{19}{2}\)

Vậy \(P=\frac{19}{2}\)

11 tháng 12 2018

Bài 2 :

a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)

\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)

\(A=\frac{x-2}{x+2}\)

c) Thay x = 4 ta có :

\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)

Vậy.........

11 tháng 12 2018

\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)

\(\left(5x-2\right)\left(25x^2+10x+4\right)\)

\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)

\(=\left(5x\right)^3-2^3\)

\(=125x^3-8\)