K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
27 tháng 9 2021

\(A=\frac{10a^2+10b^2+c^2}{ab+bc+ca}=\frac{8a^2+\frac{c^2}{2}+8b^2+\frac{c^2}{2}+2a^2+2b^2}{ab+bc+ca}\)

\(\ge\frac{2\sqrt{8a^2.\frac{c^2}{2}}+2\sqrt{8b^2.\frac{c^2}{2}}+4\sqrt{a^2b^2}}{ab+bc+ca}=\frac{4\left(ab+bc+ca\right)}{ab+bc+ca}=4\)

Dấu \(=\)khi \(a=b=\frac{c}{4}\).

27 tháng 9 2021

Bạn tham khảo nhé: áp dụng bđt côsi cho 2 số dương

2a2+2b2>=4ab;8a2+c2/2>=4ac;8b2+c2/2>=4ac nên A>=4

dấu bằng xảy ra khi 4a=4b=c

12 tháng 10 2018

ta có:

\(abc=ab+bc+ca\Rightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Lại có:

\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge\frac{3}{b},\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\ge\frac{3}{c},\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\ge\frac{3}{a}\)

\(\Rightarrow P+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow P\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

25 tháng 5 2019

Đặt: \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}=t\)

Dễ chứng minh \(t\ge3\)

Ta viết lại biểu thức: \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=t+\frac{1}{t}\)

\(=\frac{1}{9}t+\frac{1}{t}+\frac{8}{9}t\ge2\sqrt{\frac{1}{9}}+\frac{8}{9}t\ge\frac{2}{3}+\frac{24}{9}=\frac{10}{3}\)

\("="\Leftrightarrow t=3\Leftrightarrow a=b=c\)

7 tháng 9 2018

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}+\frac{1}{2ab+2bc+2ca}\)+2ca

Do a,b,c dương nên ADBĐT Cauchy ta được:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}\ge\frac{4}{(a+b+c)^2}=4\)

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow2ab+2bc+2ca\le\frac{2}{3}\)\(\Rightarrow\frac{1}{2ab+2bc+2ca}\ge\frac{3}{2}\)

Suy ra P\(\ge4+\frac{3}{2}=\frac{11}{2}\)

Dấu = khi a=b=c=\(\frac{1}{3}\)

NV
24 tháng 4 2019

\(M=\sum\frac{ab}{\sqrt{\left(2a+3b\right)^2+\left(a-b\right)^2}}\le\sum\frac{ab}{\sqrt{\left(2a+3b\right)^2}}=\sum\frac{ab}{2a+3b}\)

\(\Rightarrow M\le\frac{1}{32}\sum ab\left(\frac{2}{a}+\frac{3}{b}\right)=\frac{1}{25}\sum\left(3a+2b\right)=\frac{1}{5}\left(a+b+c\right)\)

\(M\le\frac{1}{5}\sqrt{3\left(a^2+b^2+c^2\right)}=\frac{1}{5}.3=\frac{3}{5}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

17 tháng 6 2019

#)Trả lời :

\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{a+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)

Tách VT = A + B và xét :

\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3b}{1+a^2}=\)\(\sum\)\(\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(3a-\frac{3ab}{2}\right)\)

\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\)\(\sum\)\(\left(1-\frac{b^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(1-\frac{b}{2}\right)\)

\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\)\(\sum\)\(ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)

( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))

Dấu ''='' xảy ra khi a = b = c = 1

Tham khảo nhé ^^

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

2 tháng 7 2017

Áp dụng bđt Cô-si: \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=\frac{1}{a}\)

\(\frac{c}{ab}+\frac{a}{bc}\ge2\sqrt{\frac{c}{ab}.\frac{a}{bc}}=\frac{1}{b}\)

cộng vế với vế ta được \(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=>\(A=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=2

Vậy minA=3/2 khi a=b=c=2

13 tháng 7 2019

Ctv lá láo gì abj