\(\frac{3^2}{2\cdot11}+\frac{3^2}{11\cdot14}+\frac{3^2}{14\cdot17}+...+\frac{3^2}{197\cdot200}\)
tính nhanh nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{15}{34}\)
Tính
\(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)
\(=\frac{1}{2}-\frac{1}{17}=\frac{17}{34}-\frac{2}{34}=\frac{15}{34}\)
a) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}\)
\(=1-\frac{1}{32}=\frac{31}{32}\)
b) \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)\
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\frac{1}{4}-\frac{1}{6}=\frac{1}{12}\)
\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{2006.2009}\)
\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(F=\frac{1}{5}-\frac{1}{2009}\)
\(F=\frac{2004}{10045}\)
\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{1}{11.14}+...+\frac{3}{2006.2009}\)
\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(F=\frac{1}{5}-\frac{1}{2009}\)
\(F=0\)
\(\frac{10}{11}:\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=\frac{10}{11}:\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{10}{11}:\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{10}{11}:\frac{8}{33}=\frac{10}{11}.\frac{33}{8}\)
\(=\frac{15}{4}\)
Trả lời:
\(\frac{10}{11}\div\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=\frac{10}{11}\div\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{10}{11}\div\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{10}{11}\div\frac{8}{33}\)
\(=\frac{10}{11}\times\frac{33}{8}\)
\(=\frac{15}{4}\)
\(\frac{10}{11}:\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=\frac{10}{11}:\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{10}{11}:\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{10}{11}:\left(\frac{11}{33}-\frac{3}{33}\right)\)
\(=\frac{10}{11}:\frac{8}{33}\)
\(=\frac{15}{4}\)
Học tốt
\(\frac{10}{11}:\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=\frac{10}{11}:\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{10}{11}:\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{10}{11}:\frac{8}{33}\)
\(=\frac{10}{11}.\frac{33}{8}\)
\(=\frac{15}{4}\)
A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101
A = 2 - 2/101 = 200/101
B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51
B = 3-3/51(tự tính nhé)
C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31
C = 5(5-1/31)(tự tính)
D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)
2E nhân lên rồi giải giống trên
3F Rồi nhân 4/77 và rút gọn thì tính được
a, A= \(\frac{1}{1}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0
A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)
\(\frac{3^2}{2\cdot11}+\frac{3^2}{11\cdot14}+...+\frac{3^2}{197\cdot200}=\frac{3^2}{2\cdot11}+\left(\frac{3^2}{11\cdot14}+...+\frac{3^2}{197\cdot200}\right)\)
\(=\frac{9}{22}+3\left(\frac{3}{11\cdot14}+...+\frac{3}{197\cdot200}\right)=\frac{9}{22}+3\left(\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=\frac{9}{22}+3\left(\frac{1}{11}-\frac{1}{200}\right)=\frac{9}{22}+3\left(\frac{200}{2200}-\frac{11}{2200}\right)=\frac{9}{22}+3\cdot\frac{189}{2200}\)
\(=3\cdot\left(\frac{3}{22}+\frac{189}{2200}\right)=3\cdot\left(\frac{300}{2200}+\frac{189}{2200}\right)=3\cdot\frac{489}{2200}=\frac{1467}{2200}\)