Chứng minh vs mọi số nguyên m thì m3 +5m chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m^3+5m=m\left(m^2+5\right)=m\left(m^2-1+6\right)=\left(m-1\right)m\left(m+1\right)+6m\)
Do \(\left(m-1\right)m\left(m+1\right)\) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮2.3=6\)
\(\Rightarrow m^3+5m=\left(m-1\right)m\left(m+1\right)+6m⋮6\)
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
Ta có: A=n(n+1)(2n+1)
\(=n\left(n+1\right)\left(2n+2-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+n\left(n+1\right)\left(n-1\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3!\)
hay \(\left(n-1\right)n\left(n+1\right)⋮6\)
\(\Leftrightarrow A⋮6\)
\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6
Bài làm
m^3+5m chia hết cho 6
= m^3 - m + 6m
= m(m^2 - 1) + 6m
= m.(m - 1).(m + 1) + 6m
Vì m - 1; m ; m + 1 là 3 số tự nhiên liên tiếp
Mà tích 3 số tự nhiên liên tiếp luôn chia hết cho 6
=> m(m - 1).(m + 1) chia hết cho 6
6 chia hết cho 6 => 6m chia hết 6
=>. m.(m - 1).(m + 1) + 6m chia hết cho 6
<=> m^3+5m chia hết cho 6 (đpcm)
Ta có:
\(m^3+5m=m^3-m+6m=m\left(m^2-1\right)+6m=m\left(m+1\right)\left(m-1\right)+6m\)
Lại có \(m\left(m+1\right)\left(m-1\right)⋮6\) (vì đây là tích của 3 số nguyên liên tiếp) và \(6m⋮6\)
\(\Rightarrow m\left(m+1\right)\left(m-1\right)+6m⋮6\Leftrightarrow m^3+5m⋮6\)