chứng minh rằng 10^15+10^16+10^17 chia hết cho cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
1) \(10^{19}+10^{18}+10^{17}=10^{16}.10^3+10^{16}.10^2+10^{16}.10=10^{16}.\left(1000+100+10\right)=10^{16}.1110\)
vì 1110 : 555 bằng 2
=> ................... chia hết cho 555
1) ( 1019+ 1018+1017) chia hết cho 555
= 1017.102+1018.10+1017
= 1017.(102+10+1)
= 1017.111
= 1016.10.111
= 1016.1110 = 1016.555.2
=> ( 1019+ 1018+1017) chia hết cho 555
a) 10\(^9\)+10\(^8\)+10\(^7\)
= 10\(^7\). (100 + 10 + 1)
= 10\(^6\) . 2 . 555 chia hết cho 555
b) Ta thấy: 16\(^5\)= 2\(^{20}\)
=> A = 16\(^5\) + 2\(^{15}\) = 2\(^{20}\)+ 2\(^{15}\)
= 2\(^{15}\).2\(^5\)+ 2\(^{15}\)
= 2\(^{15}\). (2\(^5\)+1)
= 2\(^{15}\).33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
Tham khảo nha Câu hỏi của Đỗ Thị Thu Trang - Toán lớp 6 - Học toán với OnlineMath
Câu 1:
10^19+10^18+10^17
=10^17(10^2+10+1)
=10^17.111
=10^16.10.111
=10^16.1110 chia hết cho 555
suy ra 10^19+10^18+10^17 chia hết cho 555
CM:\(\overline{ab}+\overline{ba}⋮11\)
Ta có :\(\overline{ab}=10a+b\)
\(\overline{ba}=10b+a\)
\(\Rightarrow\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b\)
Mà 11b\(⋮\) 11 kí hiệu là 1
11a \(⋮\) 11 kí hiệu là 2
Từ 1 và 2 \(\Rightarrow\) 10a+b+10b+a chia hết cho 11 (t/chất chia hết của 1 tổng)
\(\Rightarrow\overline{ab}+\overline{ba}⋮11\)
Sửa đề : CMR \(10^{15}+10^{16}+10^{17}\vdots 111\)
Lời giải:
Ta có:
\(10^{15}+10^{16}+10^{17}=10^{15}+10^{15+1}+10^{15+2}\)
\(=10^{15}+10^{15}.10+10^{15}.10^2\)
\(=10^{15}(1+10+10^2)=10^{15}.111\vdots 111\) (đpcm)