cho \(x^2+y^2-6x+18+6y=0\)
tính giá trị biểu thức A=\(x^{2017}.y^{2018}+x^{2018}.y^{2017}+\frac{1}{9}xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có x2+y2-6x+18+6y=0
⇔(x2-6x+9)+(y2+6y+9)=0
⇔(x-3)2+(y+3)2=0
vì (x-3)2≥0 với mọi x;(y+3)2≥0 với mọi y
⇒ (x-3)2+(y+3)2≥0 với mọi x,y
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\y+3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
ta có A=x2017.y2018+x2018.y2017+\(\dfrac{1}{9}y\)
A=\(x^{2017}\cdot y^{2017}\cdot\left(x+y\right)+\dfrac{1}{9}y\)
thay x=3; y=-3 vào A ta có giá trị biểu thức A là
A=\(3^{2017}\cdot\left(-3\right)^{2017}\cdot\left(-3+3\right)+\dfrac{1}{9}\cdot\left(-3\right)\)
A=\(-\dfrac{1}{3}\)
Vậy A=\(-\dfrac{1}{3}\) khi x=3;y=-3
Chúc bạn học tốt
\(x^2-6x+9+y^2+6y+9=0\Leftrightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
Thay vào A:
\(A=x^{2017}.y^{2018}+x^{2018}.y^{2017}+\dfrac{y}{9}=x^{2017}.y^{2017}\left(x+y\right)+\dfrac{y}{9}\)
\(\Rightarrow A=3^{2017}.\left(-3\right)^{2017}\left(3-3\right)+\dfrac{-3}{9}=-\dfrac{1}{3}\)
Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)
Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)
Dễ dàng tìm được x;y;z rồi thay vào b thức
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất.
mà \(\left|x-2016\right|+2018\ge2018\)
Dấu \(=\)khi \(x=2016\).
Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).
2) \(x-2xy+y=0\)
\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).
300m2
ta có x^2+y^2-6x+18+6y=0
(x-3)^2+(y+3)^2=0
x=3 và y=-3 thay vào biểu thức A bạn sẽ tính dc kq