K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

300m2

9 tháng 3 2019

ta có x^2+y^2-6x+18+6y=0

(x-3)^2+(y+3)^2=0

x=3 và y=-3 thay vào biểu thức A bạn sẽ tính dc kq

25 tháng 12 2018

ta có x2+y2-6x+18+6y=0

⇔(x2-6x+9)+(y2+6y+9)=0

⇔(x-3)2+(y+3)2=0

vì (x-3)2≥0 với mọi x;(y+3)2≥0 với mọi y

⇒ (x-3)2+(y+3)2≥0 với mọi x,y

\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\y+3=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)

ta có A=x2017.y2018+x2018.y2017+\(\dfrac{1}{9}y\)

A=\(x^{2017}\cdot y^{2017}\cdot\left(x+y\right)+\dfrac{1}{9}y\)

thay x=3; y=-3 vào A ta có giá trị biểu thức A là

A=\(3^{2017}\cdot\left(-3\right)^{2017}\cdot\left(-3+3\right)+\dfrac{1}{9}\cdot\left(-3\right)\)

A=\(-\dfrac{1}{3}\)

Vậy A=\(-\dfrac{1}{3}\) khi x=3;y=-3

Chúc bạn học tốt

NV
25 tháng 12 2018

\(x^2-6x+9+y^2+6y+9=0\Leftrightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)

Thay vào A:

\(A=x^{2017}.y^{2018}+x^{2018}.y^{2017}+\dfrac{y}{9}=x^{2017}.y^{2017}\left(x+y\right)+\dfrac{y}{9}\)

\(\Rightarrow A=3^{2017}.\left(-3\right)^{2017}\left(3-3\right)+\dfrac{-3}{9}=-\dfrac{1}{3}\)

3 tháng 3 2018

Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)

Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)

Dễ dàng tìm được x;y;z rồi thay vào b thức

6 tháng 4 2018

?????? tớ không biết nhưng k cho mình nha

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

DD
16 tháng 1 2021

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).