Tam giác ABC vuông tại A sao cho AB = AC.Gọi K là trung điểm của AB.
a) Chứng minh tam giác AKB = Tam giác AKC
b) Từ C kẻ đường thẳng vuông góc với BC cắt AB tại E.
c) Chứng minh CE =CB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)
\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:
\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)
b)
Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)
\(\Rightarrow EC\parallel AK\) (đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)
Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)
\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
a) vì K là trung điểm của BC nên
BK=CK=BC/2 ( tính chất)
xét tam giác AKB và tam giác AKC có
AB=AC ( gt)
AK chung
BK=CK( cmt)
⇒tg AKB=tg AKC (1)
b) từ (1) ⇒góc AKB= góc AKC ( 2 GÓC TƯƠNG ỨNG)
mà góc AKB+ góc AKC= 180 độ ( 2 góc kề bù)
⇒ góc AKB = góc AKC = 180 độ/2 = 90 độ
⇒ AK ⊥ BC
Mik mới làm được tó đây thôi. chúc cậu hok giỏi nha!!!
a) Xét ΔAKB và ΔAKC có
AB=AC(gt)
KB=KC(K là trung điểm của BC)
AK chung
Do đó: ΔAKB=ΔAKC(c-c-c)
b) Ta có: ΔABC vuông cân tại A(gt)
mà AK là đường trung tuyến ứng với cạnh đáy BC(K là trung điểm của BC)
nên AK là đường cao ứng với cạnh BC(Định lí tam giác cân)
hay AK⊥BC(đpcm)
c) Ta có: CE⊥CB(gt)
AK⊥BC(cmt)
Do đó: AK//CE(Định lí 1 từ vuông góc tới song song)
d) Xét ΔCEB vuông tại C có \(\widehat{B}=45^0\)(Số đo của một góc nhọn trong ΔABC vuông cân tại A)
nên ΔCEB vuông cân tại C(Dấu hiệu nhận biết tam giác vuông cân)
hay CE=CB(đpcm)
Lời giải:
a) Xét tam giác AKB và AKC có:
AB=AC (giả thiết)
KB=KC (do K là trung điểm của BC)
AK chung
Do đó: (đpcm)
. Mà . Do đó:
(đpcm)
b)
Ta thấy: (đã cm ở phần a)
(đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên
Tam giác CBE vuông tại C có
nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)
d mình ko biết
\
a) \(\Delta AKB\)và \(\Delta AKC\)có:
AB = AC (theo GT)
BK = CK (vì K là trung điểm của BC)
AK: cạnh chung
Do đó: \(\Delta AKB=\Delta AKC\)(c.c.c)
Suy ra: \(\widehat{AKB}=\widehat{AKC}\)(cặp góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\)(2 góc kề bù)
Nên \(\widehat{AKB}=\frac{180^o}{2}=90^o\)
Vậy \(AK\perp BC\)
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
b: \(\widehat{AEC}=45^0\)
a,Xét tam giác AKC và AKB có:
CA=BA (gt)
CK=BK(gt)
AK :cạnh chung
=>Tam giác AKC=AKB(c.c.c)
=>góc AKC =góc AKB ( vì hai góc tương ứng)
lại có :góc AKC+góc AKB =180 °(vì hai góc kề bù )
=>AKB=AKC =90 °=>AK ⊥ BC (đpcm)
b,Ta có EC ⊥ CB
AK ⊥ CB
=>CE//AK(quan hệ từ vuông góc đến song song)
a) ta có AB=AC\(\Rightarrow\Delta ABC\) là tam giác vuông cân tại A
\(\Rightarrow\widehat{ACB}=\widehat{ABC}\) hay \(\widehat{ACK}=\widehat{ABK}\)
Xét \(\Delta AKB\) và \(\Delta AKC\) có
\(AB=AC\) ( giả thiết )
\(\widehat{ABK}=\widehat{ACK}\) (chứng minh trên)
\(KB=KC\) ( Vì K là trung điểm của BC )
\(\Rightarrow\Delta AKB=\Delta AKC\left(c-g-c\right)\)
vậy \(\Delta AKB=\Delta AKC\)
b) ta có \(\Delta AKB=\Delta AKC\) (chứng minh câu a)
\(\Rightarrow\widehat{AKB}=\widehat{AKC}\) (2 góc tương ứng)
mà \(\widehat{AKB}+\widehat{AKC}=180độ\) (2 góc kề bù)
\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\dfrac{180độ}{2}=90độ\)
\(\Rightarrow AK\perp BC\)
vậy \(AK\perp BC\)
c) ta có \(AK\perp BC\) (chứng minh trên)
mà \(EC\perp BC\) ( giả thiết )
\(\Rightarrow EC//AK\)
vậy \(EC//AK\)
d) ta có \(\Delta ABC\) là tam giác vuông cân
\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45độ\)
ta có \(EC\perp BC\Rightarrow\widehat{BCE}=90độ\)
ta có \(\widehat{ACB}+\widehat{ACE}=\widehat{BCE}\)
\(45độ+\widehat{ACE}=90độ\)
\(\widehat{ACE}=90độ-45độ=45độ\)
\(\Rightarrow\widehat{ACE}=\widehat{ACB}=45độ\)
ta có \(\widehat{CAB}+\widehat{CAE}=180độ\) (2 góc kề bù)
\(\Rightarrow90độ+\widehat{CAE}=180độ\)
\(\Rightarrow\widehat{CEA}=180độ-90độ=90độ\)
\(\Rightarrow\widehat{CAE}=\widehat{CAB}=90độ\)
Xét \(\Delta ACE\) và \(\Delta CAB\) có
\(\widehat{ACE}=\widehat{ACB}\) (chứng minh trên)
CA là cạnh chung
\(\widehat{CAE}=\widehat{CAB}\) (chứng minh trên
\(\Rightarrow\Delta ACE=\Delta ACB\left(g-c-g\right)\)
\(\Rightarrow CE=CB\)
vậy \(CE=CB\)
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
b: EC vuông góc với CB
AK vuông góc với CB
Do dó: EC//AK
c: Xét ΔCEB vuông tại C có góc B=45 độ
nen ΔCEB vuông cân tại C
=>CA là phân giác của góc BCE
Sai đề rồi bạn
K là trung điểm AB
=> A, K,B thẳng hàng thì làm sao tạo đc tam giác AKB
XIN LỖI NHA ! Nhìn bị lộn . Gọi K là trung điểm của BC