K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2019

29 tháng 12 2023

Ta có: ΔBAO vuông tại A

=>ΔBAO nội tiếp đường tròn đường kính BO

=>A nằm trên đường tròn đường kính BO(1)

Ta có: ΔBMO vuông tại M

=>ΔBMO nội tiếp đường tròn đường kính BO

=>M nằm trên đường tròn đường kính BO(2)

Từ (1),(2) suy ra A,B,M,O cùng thuộc đường tròn đường kính BO

vẽ hình hộ mình đề này                                                                                                       Cho hình vuông ABCD có độ dài cạnh bằng 4cm. Vẽ đường tròn tâm O đường kính AD, kẻ BM là tiếp tuyến của đường tròn O ( M là tiếp điểm, M khác A), BM cắt CD tại K                                                                                      a) Cm 4 điểm A,B,M,O cùng thuộc 1 đg tròn ( cm: 2 tam nội tiếp)         ...
Đọc tiếp

vẽ hình hộ mình đề này                                                                                                       Cho hình vuông ABCD có độ dài cạnh bằng 4cm. Vẽ đường tròn tâm O đường kính AD, kẻ BM là tiếp tuyến của đường tròn O ( M là tiếp điểm, M khác A), BM cắt CD tại K                                                                                      a) Cm 4 điểm A,B,M,O cùng thuộc 1 đg tròn ( cm: 2 tam nội tiếp)                         b) Chứng minh OB vuông góc OK và BM.MK= AB^2/4                                 c) Đường thẳng AM cắt CD tại E. Cm K là trung điểm của ED và tính chu vi tứ giác ABKD

1
28 tháng 12 2023

Phần a) CM 2 tam giác nội tiếp thôi bạn

 

28 tháng 12 2023

a: Xét (O) có

AD là đường kính

AB\(\perp\)AD tại A

Do đó: AB là tiếp tuyến của (O)

Xét tứ giác AOMB có \(\widehat{OAB}+\widehat{OMB}=90^0+90^0=180^0\)

nên AOMB là tứ giác nội tiếp

=>A,O,M,B cùng thuộc một đường tròn

b: Xét (O) có

OD là bán kính

DK\(\perp\)DO tại D

Do đó: DK là tiếp tuyến của (O)

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: OB là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOB}\)

Xét (O) có

KM,KD là các tiếp tuyến

Do đó: OK là phân giác của góc DOM

=>\(\widehat{DOM}=2\cdot\widehat{KOM}\)

Ta có: \(\widehat{MOA}+\widehat{MOD}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{KOM}+\widehat{BOM}\right)=180^0\)

=>\(2\cdot\widehat{KOB}=180^0\)

=>\(\widehat{KOB}=90^0\)

=>OK\(\perp\)OB

Xét (O) có

BA,BM là các tiếp tuyến

Do đó: BA=BM

Xét (O) có

KD,KM là các tiếp tuyến

Do đó: KD=KM

Xét ΔOBK vuông tại O có OM là đường cao

nên \(BM\cdot MK=OM^2\)

=>\(BM\cdot MK=\left(\dfrac{1}{2}AD\right)^2=\dfrac{1}{4}AD^2=\dfrac{1}{4}AB^2\)

c: Ta có: BA=BM

=>B nằm trên đường trung trực của AM(1)

Ta có: OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra BO là đường trung trực của AM

=>BO\(\perp\)AM

mà BO\(\perp\)OK

nên AM//OK

Xét ΔDEA có

O là trung điểm của AD

OK//AE

Do đó: K là trung điểm của DE