K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)=20\)

\(3x+6=20\)

\(\Leftrightarrow3x=14\)

\(\Leftrightarrow x=\frac{14}{3}\)

Vậy \(x=\frac{14}{3}\)

24 tháng 12 2018

   (x+1) + (x+2) + (x+3) = 3x + 6 = 20

=> 3x + 6 =20

      3x       = 20 - 6

      3x       = 14

       x        = 14/3

12 tháng 6 2021

x/2+x+x/3+x+x+x/4=23/4

⇒ 6x/12+12x/12+4x/12+12x/12+12x/12+3x/12=23/4

⇒ (6x+12x+4x+12x+12x+3x)/12=23/4

⇒ 49x/12=23/4

⇒ 49x=23/4.12

⇒ 49x=69

⇒ x=69/49

12 tháng 6 2021

6x là sao bạn 

a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)

24 tháng 11 2020

a) 36=22.3236=22.32

24=23.324=23.3

UCLN(24,36)=22.3=12UCLN(24,36)=22.3=12

UC={1,2,3,4,6,12,-1,-2,-3,-4,-6-12}

vì x ≤ 20 nên x={1,2,3,4,6,12,-1,-2,-3,-4,-6-12}

b) 60=22.3.5,84=22.3.7,120=23.3.560=22.3.5,84=22.3.7,120=23.3.5

UCLN(60,84,120)=22.3=12UCLN(60,84,120)=22.3=12

UC={1,2,3,4,6,12,-1,-2,-3,-4,-6-12}

Vì x ≥ 6 nên x={6,12}

13 tháng 8 2018

\(2.x=\frac{1+2+3+...+9}{1-2+3-4+5-6+7-8+9}+\frac{25.150-60.5+20.75}{1+2+3+...+99}\)

\(2.x=\frac{\left(9+1\right).9:2}{\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+9}+\frac{2.3.5^2.\left(5^2-2+2.5\right)}{\left(1+99\right).99:2}\)

\(2.x=\frac{45}{\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+9}+\frac{2.3.5^2.33}{100.99.\frac{1}{2}}\)

\(2x=\frac{45}{5}+\frac{50.99}{50.2.99.\frac{1}{2}}=9+\frac{1}{2.\frac{1}{2}}=9+1=10\)

=> 2x = 10

x = 5

4 tháng 7 2019

Ta có: (2 - x)(4/5 - x) < 0

=> \(\hept{\begin{cases}2-x>0\\\frac{4}{5}-x< 0\end{cases}}\) hoặc \(\hept{\begin{cases}2-x< 0\\\frac{4}{5}-x>0\end{cases}}\)

=> \(\hept{\begin{cases}x>2\\x< \frac{4}{5}\end{cases}}\) (loại) hoặc \(\hept{\begin{cases}x< 2\\x>\frac{4}{5}\end{cases}}\)

=> \(\frac{4}{5}< x< 2\)

4 tháng 7 2019

\(\left(2-x\right)\left(\frac{4}{5}-x\right)< 0\)

TH1 : \(\hept{\begin{cases}2-x>0\\\frac{4}{5}-x< 0\end{cases}\Rightarrow\hept{\begin{cases}2>x\\\frac{4}{5}< x\end{cases}}}\)\(\Rightarrow\frac{4}{5}< x< 2\)

Th2 : \(\hept{\begin{cases}2-x< 0\\\frac{4}{5}-x>0\end{cases}\Rightarrow\hept{\begin{cases}2< x\\\frac{4}{5}>x\end{cases}}}\)\(\Rightarrow x\in\varnothing\)

Vậy \(\frac{4}{5}< x< 2\)

25 tháng 8 2023

\(\left|x-5\right|+\left|x-11\right|=3x\) (1)

+, \(x< 5\) thì \(\left(1\right)\) trở thành:

\(-\left(x-5\right)+\left[-\left(x-11\right)\right]=3x\)

\(\Rightarrow-2x+16=3x\)

\(\Rightarrow-5x=-16\Leftrightarrow x=\dfrac{16}{5}\left(tm\right)\)

+, \(5\le x< 11\) thì (1) trở thành:

\(x-5-\left(x-11\right)=3x\)

\(\Rightarrow6=3x\Leftrightarrow x=2\left(ktm\right)\)

+, \(x\ge11\) thì (1) trở thành:

\(x-5+x-11=3x\)

\(\Rightarrow2x-16=3x\)

\(\Rightarrow-x=16\Leftrightarrow x=-16\left(ktm\right)\)

Vậy \(x=\dfrac{16}{5}\)

7 tháng 7 2021

\(A=x^2-x=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\) 

Vậy \(A_{min}=-\dfrac{1}{4}\)

7 tháng 7 2021

 

A= x^2-x

A= (x-1/2)^2-1/4

ta thấy (x-1/2)^2\(\ge\)0

=>(x-1/2)^2-1/4\(\ge\)-1/4

hay A\(\ge\)-1/4

vậy \(A_{min}\)=-1/4<=>x=1/2