K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2022

=>2x^2-2x+1/2+8y^2+4y+1/2=0

=>2(x-1/2)^2+8(y^2-1/2y+1/16)=0

=>2(x-1/2)^2+8(y-1/4)^2=0

=>x=1/2 và y=1/4

P=(x-2y)^2020=(1/2-1/2)^2020=0

NV
25 tháng 12 2022

\(8x^2+14xy+8y^2+2x-2y+2=0\)

\(\Leftrightarrow7\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

Do \(\left\{{}\begin{matrix}7\left(x+y\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\) ; \(\forall x;y\)

Nên \(7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0;\forall x;y\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

23 tháng 1 2018

ai giúp vs

28 tháng 12 2019

(x-2y-2)2+(y-6)2 =39-2A

A=< 39/2, max A là 39/2 khi x =14 và y =6

3 tháng 10 2020

a) 5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1

Ta có : \(\hept{\begin{cases}\left(x-3y\right)^2\\\left(2x-1\right)^2\\\left(y-1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)

=> đpcm

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 = 0 < Sửa -z2 -> +z2 )

= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1

= ( x - 1 )2 + 4( y2 + 2y + 1 ) + ( z - 3 )2 + 1

= ( x - 1 )2 + 4( y + 1 )2 + ( z - 3 )2 + 1

Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\4\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\)

=> đpcm

13 tháng 8 2017

1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy)   (vì x-2y=5 và x^2+4y^2=29)     (1)

Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)

                                                                                          => xy=1    (2)

Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155

Vậy gt của bt A là 155

2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab

=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)

=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)

=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)

=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)

10 tháng 7 2021

Cộng vế với vế ta được

x2 + 2y + 1 + y2 + 2x + 1 + z2 + 2x + 1 = 0 

<=> (x2 + 2x + 1) + (y2 + 2y + 1) + (z2 + 2z + 1) = 0

<=> (x + 1)2 + (y + 1)2 + (z + 1)2 = 0

<=> \(\hept{\begin{cases}x+1=0\\y+1=0\\z+1=0\end{cases}}\Leftrightarrow x=y=z=-1\)

Khi đó A = x2000 + y2000 + z2000

= (-1)2000 + (-1)2000 + (-1)2000 = 1 + 1 + 1 = 3

Vậy A = 3

29 tháng 8 2023

Đặt x = -2y + k (k \(\inℤ\))

Ta có x2 + 8y2 + 4xy - 2x - 4y = 4

<=> (-2y + k)2 + 8y2 + 4y(-2y + k) - 2(-2y + k) - 4y = 4

<=> k2 + 4y2 - 2k = 4

<=> (k - 1)2 + (2y)2 = 5 (*) 

Dễ thấy (2y)2 \(⋮4\) (**)

Với y,k \(\inℤ\) kết hợp (*) ; (**) ta được 

\(\left\{{}\begin{matrix}\left(k-1\right)^2=1\\\left(2y\right)^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}k=0\\k=2\end{matrix}\right.\\y=\pm1\end{matrix}\right.\) 

Vậy (k,y) = (0;1) ; (0;-1) ; (2;1) ; (2;-1) 

mà x = k - 2y nên các cặp (x;y) thỏa là (-2;1) ; (2;-1) ; (0;1) ; (4;-1)  

13 tháng 8 2017

Ta co: a = x^3 - 8y^3 => a = ( x - 2y ) ( x^2 + 2xy + 4y^2 ) => a = 5. ( 29 + 2xy) ( vi x - 2y = 5 va x^2 + 4y^2 = 29 )         (1)

Mat khac : x - 2y = 59(gt) => ( x - 2y )^2 = 25 => x^2 - 4xy + 4y^2 = 25 => 29 - 4xy = 25 ( vi x^2 + 4y^2 = 29 )

                                                                                                                          => xy = 1                                                    (2)

13 tháng 8 2017

k cho mk nhe

10 tháng 1 2021

\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)

\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)

TH1 : \(4y^2=0\)

Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.

=> Không có số nguyên x nào thỏa mãn.

TH2 : \(4y^2>0\)

Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)

Mà y nguyên

=> \(4y^{2}=4\)

=> y ∈ {1 ; -1}

Với y = 1

=> x + 3 = 1

=> x = -2 (tm)Với y = -1

=> x - 1 = 1

=> x = 2 (tm)Vậy..

20 tháng 8 2021

từ trường hợp y=1 của bạn có thể giải thành 2 trường hợp của x

Thay y=1 vào \(\left(x+2y-1\right)^2=5-4y^2\)được

\(\left(x+2-1\right)^2=5-4\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow\left(x-1\right)^2-1=0\Leftrightarrow x\left(x-2\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

*Trường hợp y=-1

\(\left(x-2-1\right)^2=5-4\Leftrightarrow\left(x-3\right)^2=1\Leftrightarrow\left(x-3\right)^2-1=0\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)