Chứng tỏ rằng với mọi n là số tự nhiên :
a, 3n^2 + n chia hết cho 2
b, 4n^2 + 12n + 10 không chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm mẫu câu b)
b) n là số tự nhiên nên n có 1 trong 2 dạng 2k hoặc 2k + 1
TH1: n = 2k
\(\Rightarrow\) \(\left(2k+5\right)\left(2k+8\right)=2\left(k+4\right)\left(2k+5\right)⋮2\)
TH1: n = 2k +1
\(\Rightarrow\left(2k+1+5\right)\left(2k+1+8\right)=2\left(k+3\right)\left(2k+9\right)⋮2\)
a) Do (2n+5) là số lẻ,4n+2023 là số lẻ \(\Rightarrow\)(2n+5).(4n+2023) là số lẻ
\(\Rightarrow\)(2n+5).(4n+2023) không chia hết cho 2
Vậy .................
a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2
Vậy (5n+7)(4n+6) chia hết cho 2
Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.
mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho
vậy (5n+7)(4n+6) chia het cho (đpcm)
b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)
6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)
từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le
vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n
câu a bạn nên làm theo cách 2
Ta có:
a) ( 3 n + 1 ) 2 - 25 = 3(3n - 4)(n + 2) chia hết cho 3;
b) ( 4 n + 1 ) 2 - 9 = 8(2n - 1)(n +1) chia hết cho 8.
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
a) Xét 3 t/h của x :
+) Xét n là số lẻ => ( 5n + 7 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
+) Xét n là số chẵn => ( 4n + 6 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
+) Xét n bằng 0 => ( 4n + 6 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2
Vậy ta có đpcm
b) C.m tương tự câu a :
+) Với n lẻ thì ko có thừa số nào là số chẵn => ko chia hết cho 2
+) Với n chẵn thì cx ko có thừa số nào là số chẵn => ko chia hết cho 2
+) Với n = 0 thì cx ko có thừa số nào là số chẵn => ko chia hết cho 2
Vậy ta có đpcm
P.s : chỉ cần mỗi t/h đầu là có thể đpcm rồi, nhưng để đầy đủ thì cứ làm cả ra nha
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
AI LÀM ĐC MÌNH K 3 CÁI LUN !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!