K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

Từ \(b^2=ac\)\(\Rightarrow\frac{b}{a}=\frac{c}{b}\)(1)

Từ \(c^2=bd\)\(\Rightarrow\frac{c}{b}=\frac{d}{c}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{b}{a}=\frac{c}{b}=\frac{d}{c}\)

\(\Rightarrow\left(\frac{b}{a}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{d}{c}\right)^3=\frac{b^3}{a^3}=\frac{c^3}{b^3}=\frac{d^3}{c^3}=\frac{b^3+c^3+d^3}{a^3+b^3+c^3}\)

mà \(\left(\frac{b}{a}\right)^3=\frac{b}{a}.\frac{b}{a}.\frac{b}{a}=\frac{b}{a}.\frac{c}{b}.\frac{d}{c}=\frac{b.c.d}{a.b.c}=\frac{d}{a}\)

\(\Rightarrow\frac{b^3+c^3+d^3}{a^3+b^3+c^3}=\frac{d}{a}=\left(\frac{b}{a}\right)^3\left(đpcm\right)\)

24 tháng 12 2018

Bạn giải thích cho mk là vì sao \(\frac{b}{a}=\frac{b}{a}=\frac{b}{a}=\frac{b}{a}.\frac{c}{b}.\frac{d}{c}\)  với ạ? Mk k hiểu chỗ này

1 tháng 11 2018

Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!

15 tháng 2 2015

mày có thể tự suy nghĩ ra rùi đặt k rùi làm dễ vkl

 

7 tháng 12 2016

bạn đặt a ra dùi tính như thường

10 tháng 10 2021

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

10 tháng 10 2021

trả lời :

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

^HT^

20 tháng 10 2016

Ta có:

\(\begin{cases}b^2=ac\\c^2=bd\end{cases}\)\(\Rightarrow\begin{cases}\frac{b}{c}=\frac{a}{b}\\\frac{c}{d}=\frac{b}{c}\end{cases}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)

5 tháng 11 2021

Ta có:

\(b^2=ac\rightarrow\frac{a}{b}=\frac{b}{c}\) ( \(b\ne0,c\ne0\)

\(c^2=bd\rightarrow\frac{b}{c}=\frac{c}{d}\) \(d\ne0\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\rightarrow\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) ( \(bcd\ne0\)vì \(b^3+c^3+d^3\ne0\))

áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\rightarrow\frac{abc}{bcd}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

\(\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

Ta có b²=ac=>a/b=b/c

           c²=bd=>b/c=c/d

=>a/b=b/c=c/d

=>a³/b³=b³/c³=c³/d³

=>a³/b³=b³/c³=c³/d³=(a³+b³+c³)/(b³+c³+d³)=>a/b=b/c=c/d=(a³+b³+c³)/(b³+c³+d³)

Mà b/c=c/d=>d/c=c/b

=>a/b=d/c

=>a/d=b/c=(a³+b³+c³)/(b³+c³+d³)

=đpcm

3 tháng 3 2019

TA  có : b^2=ac suy ra: a/b=b/c(1)

C^2=bd suy ra: b/c =c/d(2)

Từ(1),(2)ta đc: a/b=b/c=c/d

Áp dụng t/c dãy tỉ số bằng nhau ta đc

a/b=b/c=c/d=a^3/b^3=b^3/c^3=c^3/d^3=a^3+

b^3+c^3/b^3+c^3+d^3

Từ đó a/b= a^3+b^3+c^3/b^3+c^3+d^3

Tương tự b/c và c/d

Suy ra abc/bcd=a^3+b^3+c^3/b^3+c^3+d^3

=» a/d=a^3+b^3+c^3/b^3+c^3+d^3( ĐPCM)

28 tháng 12 2016

đưa các đẳng thức đã cho về phân số, áp dụng t/c cuẩ dãy tỉ số bằng nhau rồi lập phương lên
 

1 tháng 10 2017

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

\(\RightarrowĐPCM\)

1 tháng 10 2017

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

\(\Rightarrow\)\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)             ( đpcm )