K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

MD sao bằng AC được bạn

11 tháng 12 2022

a: Xét tứ giác ADME có

AD//ME

AE//MD

Do đo: ADME là hình bình hành

b: Xét ΔEMC có góc EMC=góc ECM(=góc B)

nên ΔEMC cân tại E

=>EM=EC

d: Để ADME là hìh thoi thì AM là phân giác của góc BAC

=>M là chân đừog phân giác kẻ từ A xuống BC

a) Xét tứ giác ADME có 

AD//ME

DM//AE

Do đó: ADME là hình bình hành

b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)

nên ΔEMC cân tại E

Suy ra: EM=EC

Ta có: AE+EC=AC(E nằm giữa A và C)

mà AE=DM(AEMD là hình bình hành

mà EM=EC(cmt)

nên AC=MD+ME

2 tháng 10 2021

cho mình hỏi ngu tí là ở câu b đó ạ,từ đâu mà suy ra được góc EMC = C(=B) ạ :((

2 tháng 1 2017

ai biết

b: Xét ΔMEC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)

nên ΔMEC cân tại E

 

a) Xét ΔABC có 

D∈AB(gt)

M∈BC(Gt)

DM//AC(gt)

Do đó: \(\dfrac{BD}{BA}=\dfrac{DM}{AC}\)(Định lí Ta lét)

mà BA=AC(ΔABC cân tại A)

nên BD=DM

Xét ΔDMB có DM=DB(cmt)

nên ΔDMB cân tại D(Định nghĩa tam giác cân)

20 tháng 3 2021

em chx hok định lý Ta Lét nên chx lm đc

20 tháng 12 2023

a: Xét tứ giác ADME có

AD//ME

AE//MD

Do đó: ADME là hình bình hành

Hình bình hành ADME có \(\widehat{DAE}=90^0\)

nên ADME là hình chữ nhật

b: Để hình chữ nhật ADME trở thành hình vuông thì AM là phân giác của góc DAE

=>AM là phân giác của góc BAC

Xét ΔABC có

AM là đường trung tuyến

AM là đường phân giác

Do đó: ΔABC cân tại A

=>AB=AC

c:

Sửa đề: DE=1/2BC

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{1}{2}BC\)

20 tháng 2 2021

image

Chúc bạn học tốt

a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có 

AB=AC(ΔABC cân tại A)

AM chung

Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)

Suy ra: MB=MC(hai cạnh tương ứng)

b) Ta có: ΔAMB=ΔAMC(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có 

MB=MC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)

Suy ra: DM=EM(hai cạnh tương ứng)

Xét ΔMDE có MD=ME(cmt)

nên ΔMDE cân tại M(Định nghĩa tam giác cân)