Cho tam giac ABC vuong tai A .M trung điểm AC . Trên tia đối của tia MB lấy điểm D sao cho MD=MB.a)tam giác ABM= tam giác CDM.b)AC vuông góc DC.Gọi E trung điểm BC , tia EM cắt AD tại F . Chứng minh F là trung điểm của AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
1) Xét tam giác ABM và tam giác CDM có:
- AM = CM
- Góc AMB = góc CMD (2 góc đối đỉnh)
- BM = DM
-> Tam giác ABM = tam giác CDM (c.g.c)
2) Vì tam giác ABM = tam giác CDM
-> Góc MAB = góc MCD = 90o
-> MC vuông góc vs CD hay AC vuông góc vs DC
3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:
- M là trung điểm của AC (giả thiết)
- MF//DC (cmt)
Nên MF là đường trung trực của tam giác ACD
-> F là trung điểm của AD
EM RẢNH NÊN EM MỚI TL CHỨ LÂU NHƯ NÀY EM KO RẢNH CHẮC KO TL ĐÂU
TL:
1) Xét tam giác ABM và tam giác CDM có:
- AM = CM
- Góc AMB = góc CMD (2 góc đối đỉnh)
- BM = DM
-> Tam giác ABM = tam giác CDM (c.g.c)
2) Vì tam giác ABM = tam giác CDM
-> Góc MAB = góc MCD = 90o
-> MC vuông góc vs CD hay AC vuông góc vs DC
3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:
- M là trung điểm của AC (giả thiết)
- MF//DC (cmt)
Nên MF là đường trung trực của tam giác ACD
-> F là trung điểm của AD
xét ΔABM và ΔCDM :
AM = CM ( M là t/đ của AC )
góc AMB = góc CMD ( đối đỉnh )
MB = MD ( gt)
do đó : ΔABM = ΔCDM ( c.g.c )
b) Ta có: ΔABM=ΔCDM(cmt)
nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(gt)
nên \(\widehat{MCD}=90^0\)
Ta có: \(\widehat{MCD}+\widehat{MCB}=\widehat{DCB}\)(Tia CM nằm giữa hai tia CD,CB)
nên \(\widehat{DCB}>\widehat{MCD}\)
hay \(\widehat{DCB}>90^0\)
Xét ΔDCB có \(\widehat{DCB}>90^0\)(cmt)
mà cạnh đối diện với \(\widehat{DCB}\) là cạnh DB
nên DB là cạnh lớn nhất trong ΔDCB(Định lí)
hay DB>BC
mà BC>AC(ΔABC vuông tại A có BC là cạnh huyền nên BC là cạnh lớn nhất)
nên AC<BD(Đpcm)
bạn tự vẽ hình nha
a) xét tg ABM và tg CDM có
MA=MC(M là trung điểm AC )
\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )
MB=MD(gt)
\(\Rightarrow\)tg ABM=tg CDM (c-g-c)
b) bạn xem lại đề bài nha mik nghĩ là đề sai
c) ta có MB=MD,MA=MC(gt)
mà M lại là trung điểm của BD,AC
\(\Rightarrow\)ABCD là hình chữ nhật
có E là trung diểm BC
mà EM cắt AD tại F
\(\Rightarrow F\)là trung điểm AD (dpcm)
P/s : sửa đề : MB = MD
a) Xét tam giác ABM và tam giác CDM có :
AM = CM ( vì M là trung điểm của AC )
Góc AMB = góc CMD ( 2 góc đối đỉnh )
MB = MD ( GT )
=> tam giác ABM = tam giác CDM ( c - g - c )
b) Theo chứng minh trên , ta có : tam giác ABM = tam giác CDM
=> Góc BAM = Góc MCD ( 2 góc tương ứng )
Mà góc BAM = 90o ( Tam giác ABC vuông tại A )
=> Góc MCD = 90o
=> AC vuông góc với DC tại C
c) +) Xét tam giác ABC có :
E là trung điểm của BC ( GT )
M là trung điểm của AC ( GT )
=> EM là đường trung bình của tam giác ABC
=> EM // AB ( tính chất )
Mà AB // CD ( do AC \(\perp\)CD ; AC \(\perp\) AB )
=> EM // CD hay MF // CD
+) Xet tam giác ACD có :
M là trung điểm của AC
MF // CD
=> F là trung điểm của AD ( điều phải chứng mình )
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
a) Xét ΔAMD và Δ CMB có :
MA = MC ( M là trung điểm của AC )
Góc AMD = góc CMB ( đối đỉnh )
MB = MD ( gt)
=> ΔAMD = Δ CMB ( c.g.c )
=> AD = BC ( 2 cạnh tương ứng )
*Xét Δv ABM và Δv CDM có :
MB = MD ( gt)
Góc AMB = góc CMD ( đối đỉnh )
=> Δ vABM = Δv CDM ( ch - gn)
=> Góc BAM = góc DCM ( 2 góc tương ứng )
mà góc BAM = 90 độ
=> Góc DCM = 90 độ
a)Xét tam giác ABM và tam giác CBM có:
BM=MD(gt)
góc BMA=góc DMC(đđ)
AM=CM(gt)
Suy ra 2 tam giác này băng nhau(c.g.c)
Suy ra AB=CD(2 cạnh tương ứng)