K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O (gt)

⇒O là trung điểm của AC và BD

⇒AO=AC2 và DO=BD2

=> AO=6/2=3(cm) và DO = 8/2= 4cm

AC vuông góc BD TẠI O ( vì ABCD là hình thoi )

tam giác ADO vuông góc tại O có AD bình = AO bình + DO bình ( định lý pytago)

=> AD2 =3 bình + 4 bình = 25 => AD= 5cm 

Vậy AB=BC=DC=AD=5cm

undefined

Độ dài đường chéo BD là :

24 x 2/3 = 16 ( cm )

Diện tích hình thoi ABCD là :

24 x 16 : 2 = 192 ( cm2)

        Đáp số : 192 cm2

27 tháng 3 2022

192

29 tháng 3 2022

mình lười giải quá!

30 tháng 11 2015

A B C D O

Ta có:

ABCD là hình thoi nên AB = BC = CD = DA ( = CA = 4 cm)

Do đó: tam giác ABC là tam giác đều ( do AB = BC = CA ( = 4 cm))

Suy ra, góc B = 60o

Mà góc B và góc D là hai góc đối nhau nên theo tính chất hình thoi, góc D = 60o

                                         ------------------------------------

 

Theo tính chất hình thoi, 2 đường chéo vuông góc với nhau nên AC vuông góc với BD tại O

Tam giác đều ABC có OB là đường cao nên cũng là đường trung tuyến

 Do đó: \(OA=OC=\frac{1}{2}.AC=\frac{1}{2}.4=2\) (cm)

Áp đụng định lý Py-ta-go vào tam giác OAB, ta được:

\(AB^2=OA^2+OB^2\)

\(\Rightarrow\)  \(OB^2=AB^2-OA^2=4^2-2^2=16-4=12\)

\(\Rightarrow\)  \(OB=\sqrt{12}\) (cm)

  

29 tháng 3 2022

bằng?