K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

a,Ta có:Tứ giác ABCD là hình thoi(gt)

=>AC vuông góc vs BD(t/c hình thoi)

=>góc AEB=90 độ

Có:AF//EB(doAM//BD)

=>gócFAE=gócAEB=90 độ(trong cùng phía)

Có:FB//AE(do FB//AC)

=>góc FBE=góc AEB=90 độ(trong cùng phía)

Xét tứ giác AEBF có:

gócAEB=90 độ(cmt)

gócFAE=90độ(cmt)

gócFBE=90độ(cmt)

=>Tứ giác AEBF là hình chữ nhật

Lại có:AE=EB(t/c hình thoi)

=>Tứ giác AEBF là hình vuông

23 tháng 12 2018

hình:

A B C D M F H E 1

~~~

a/ Hthoi ABCD có 2 đường chéo BD và AC cắt nhau tại E

=> BD _|_ AC => góc E1 = 90o

Vì AM // BD => góc FAE = 90o

BF // AC => góc FBE = 90o

Tứ giác AEBF có: \(\widehat{E_1}=\widehat{FAE}=\widehat{FBE}=90^o\)

=> tứ giác AEBF là hcn

b/ Vì AM cắt BC tại M nên 3 điểm M,B,C thẳng hàng (1)

BC // AD => MB // AD

mặt khác: AM // BD

=> AMBD là hbh => MB = AD (*)

mà ABCD là hthoi => AB = BC = AD (**)

Từ (*) , (**) => MB = BC (2)

Từ (1) và (2) => B là trung điểm của MC (đpcm)

c/ Xét 2Δvuông: AMH và CMA có:

\(\widehat{M}:chung\)

\(\widehat{AHM}=\widehat{CAM}=90^o\)

=> ΔAMH ~ ΔCMA (g.g)

=> \(\dfrac{AM}{MC}=\dfrac{AH}{AC}\Rightarrow AH\cdot MC=AM\cdot AC\)

Lại có: AM = BD (AMBD là hbh)

=> AH . MC = BD . AC (đpcm)

13 tháng 9 2023

a) Xét tam giác \(ADC\) có \(OF//DC\), theo định lí Thales ta có:

\(\frac{{AF}}{{AD}} = \frac{{AO}}{{AC}}\) (1)

Xét tam giác \(ABC\) có \(OE//BC\), theo định lí Thales ta có:

\(\frac{{AE}}{{AB}} = \frac{{AO}}{{AC}}\) (2)

Từ (1) và (2) suy ra, \(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Xét tam giác \(ABD\) có:

\(\frac{{AF}}{{AD}} = \frac{{AE}}{{AB}}\)

Theo định lí Thales đảo suy ra \(EF//BD\).

b) Xét tam giác \(ADC\) có \(OH//AD\), theo định lí Thales ta có:

\(\frac{{CH}}{{CD}} = \frac{{CO}}{{AC}}\) (3)

Xét tam giác \(ABC\) có \(OG//AB\), theo định lí Thales ta có:

\(\frac{{CG}}{{BC}} = \frac{{CO}}{{AC}}\) (4)

Từ (3) và (4) suy ra, \(\frac{{CH}}{{CD}} = \frac{{CG}}{{BC}}\)

Theo định lí Thales đảo suy ra \(GH//BD\).

Xét tam giác \(BCD\) có \(GH//BD\), theo định lí Thales ta có:

\(\frac{{CH}}{{DH}} = \frac{{CG}}{{BG}} \Rightarrow CH.BG = DH.CG\) (điều phải chứng minh).

a: Xét ΔADC có OF//DC

nên AF/AD=AO/AC

Xét ΔABC có EO//BC

nên AE/AB=AO/AC

=>AF/AD=AE/AB

=>EF//BD

b: OH//AD

=>CH/CD=CO/CA

OG//AB

=>CG/BC=CO/CA

=>CG/BC=CH/CD

=>GH//BD

=>CH/DH=CG/BG

=>CH*BG=DH*CG

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ...
Đọc tiếp

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF

2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.

Tính tỷ số diện tích tam giác AND với diện tam giác PMD?

 

0
27 tháng 2 2018

bạn vẽ hình đi

15 tháng 3 2017

a, Do CD//AB, DM//BD nên ta dễ thấy: tam giác DMC đồng dạng với tam giác BCA(g.g)
suy ra: MC/CA=CD/AB = AF/AB ( vì ADCF là hình bình hành nên CD=AF) (1)
Ta lại có: FP//AC nên: CP/CB=AF/AB (2)
Từ (1),(2) ta có: CM/CA=CP/CB
Theo định lí Talet đảo ta có: MP//AB
b, Gọi N, N' là giao điểm của MP,DB với CF
Ta có: CN/CF= CM/CA =CD/AB ( theo phần a,)
CN'/N'F=CD/FB suy ra AN'/CF=CD/( FB+CD)=CD/AB ( vì CD=AF)
Vậy CN=CN' nên N' trùng N
Từ đó ta suy ra: MP,CF,DB đồng quy

leuleutks nhiều nha