1, Cho A=111...1 (n chữ số 1)
B=333..36333...3 (n chữ số 3 / n chữ số 3)
Chứng minh rằng: A;B là các hợp số
2, Cho p, q là các số nguyên tố lẻ liên tiếp
Chứng minh rằng: \(\frac{p+q}{2}\)là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
111...12111...1 nếu số chữ số 1 ở cả 2 bên như nhau thì nó là hợp số vì (gọi số chữ số 1 là n):
111...12111...1 (n chữ số 1 / n chữ số 1)=111...1000...0 (n chữ số 1 / n+1 chữ số 0)+111...1 (n chữ số 1)
Vì tổng trên có 2 số hang đều chia hết cho 111...1 (n chữ số 1) nên số 111...12111...1 (n chữ số 1 / n chữ số 1) chia hết cho 111...1 (n chữ số 1) và nó lớn hơn 111...1 (n chữ số 1) nên nó là hợp số.
111...12111..1 nếu cả 2 bên đều có chữ số 1 ở bên như nhau thì nó là hợp số (vì có n chữ số 1)
9 x 8 x 48 + 7 x 4 x 48 + 72 x 52
=72 x 48 + 28 x 48 + 72 x 52
=( 72 + 28 ) x 48 + 72 x 52
=100 x 48 + 3744
=4800 + 3744
=8544
111...12111...1 nếu số chữ số 1 ở cả 2 bên như nhau thì nó là hợp số vì (gọi số chữ số 1 là n):
111...12111...1 (n chữ số 1 / n chữ số 1)=111...1000...0 (n chữ số 1 / n+1 chữ số 0)+111...1 (n chữ số 1)
Vì tổng trên có 2 số hang đều chia hết cho 111...1 (n chữ số 1) nên số 111...12111...1 (n chữ số 1 / n chữ số 1) chia hết cho 111...1 (n chữ số 1) và nó lớn hơn 111...1 (n chữ số 1) nên nó là hợp số.
Đặt A = n^2019 - n^2016 + n^2013 - ... + n^3 - 1
A = n^2016( n^3 - 1 ) + ... + (n^3 - 1)
A = (n^2016 + n^2010 + ... + 1)(n^3 - 1) chia hết cho n^3 - 1
Đặt B = n^2016 - n^2013 + ... - n^3
B = n^2013( n^3 - 1 ) + ... + n^3( n^3 - 1 )
B = (n^2013 + n^2007 + ... + n^3)(n^3 - 1) chia hết cho n^3 - 1
Suy ra A + B chia hết cho n^3 - 1
Lại có A + B = n^2019 -1 nên n^2019 -1 chia hết cho n^3 - 1