K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

a: \(P=2x^2+3xy+y^2=\left(2x+y\right)\left(x+y\right)\)

\(=\left(2\cdot\dfrac{-1}{2}+\dfrac{2}{3}\right)\left(\dfrac{-1}{2}+\dfrac{2}{3}\right)\)

\(=\dfrac{-1}{3}\cdot\dfrac{1}{6}=-\dfrac{1}{18}\)

d: \(Q=\dfrac{-1}{3}x^4y^2=\dfrac{-1}{3}\cdot16\cdot\dfrac{1}{16}=-\dfrac{1}{3}\)

10 tháng 1 2017

a)     xy+3x-7y=21
        xy+3x-7y-21=0
        (xy+3x)-(7y+21)=0
        x(y+3)-7(y+3)=0
        (x-7)(y+3)=0
   => X-7=0 hoặc y+3=0
 * Nếu x-7=0
           x=7
 * Nếu y+3=0
           y=-3
Vậy .....

23 tháng 11 2019

Ta co:

\(x^2+y^2+\frac{2}{xy}\ge2xy+\frac{2}{xy}=2\left(xy+\frac{1}{xy}\right)\ge4\)

Dau '=' xay ra khi \(x=y=1\)hoac \(x=y=-1\)

27 tháng 11 2019

Áp dụng BĐT Cauchy cho 2 số không âm:

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)(Vì x,y cùng dấu)

và \(xy+\frac{1}{xy}\ge2\sqrt{\frac{xy}{xy}}=2\)(Vì x,y cùng dấu)

\(\Rightarrow x^2+y^2+\frac{2}{xy}\ge2xy+\frac{2}{xy}=2\left(xy+\frac{1}{xy}\right)\ge4\)(Vì \(xy+\frac{1}{xy}\ge2\left(cmt\right)\))

Vậy GTNN của \(x^2+y^2+\frac{2}{xy}\)là 4\(\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)

1 tháng 2 2019

https://dethi.violet.vn/present/showprint/entry_id/11072330

bạn vào link trên sẽ có full đề và đáp án 

p/s: nhớ k cho mình nha <3

\(\frac{x-2}{4}=-\frac{16}{2-x}\)

\(\Leftrightarrow\frac{x-2}{4}=\frac{16}{x-2}\)

\(\Leftrightarrow\left(x-2\right)^2=4.16=64\)

\(\Leftrightarrow\left(x-2\right)^2=8^2\)

\(\Leftrightarrow\left(x-2-8\right)\left(x-2+8\right)=0\)

\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg