Cho hàm số y=f(x) xác định với \(x\inℝ,x\ne0\)và thỏa \(f\left(x\right)+3f\left(\frac{1}{2}\right)=x^2\). Tính f (2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: f(x) +3f(1/x) =x^2 với mọi x thuộc R
mà f(2)
=> f(2) +3f(1/2) = 2^2 =4 (1)
=> 3f(2) +f(1/2) =1/4 => 9f(2) +3f(1/2) = 3/4 (2)
=> (2) -(1) = 9f(2) +3f(1/2) - f(2) - 3f(1/2)
= 8f(2) = 3/4 -4
= -13/4
=> 8f(2) = -13/4
f(2) = -13/4 :8
f(2) = -13/32
p/s nha bn !!!!
Thế \(x=2,x=\frac{1}{2}\)thì được
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}f\left(2\right)=-\frac{13}{32}\\f\left(\frac{1}{2}\right)=\frac{47}{32}\end{cases}}\)
thay x=2 và x=1/2 ta có
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\end{cases}\Rightarrow f\left(2\right)=-\frac{13}{32}}\)
Xét hàm số f(x) thỏa mãn f(x)+2f(1/x)=x^2. với mọi x thuộc R.
Đúng với x = 2 . => f(2) + 2f(1/2) = 2^2 = 4
=> f(2) + 2f(1/2) = 4 ( 1 )
Đúng với x = 1/2 => f(1/2) + 2f(2) = (1/2)^2 = 1/4.
=> 2f(2) + f (1/2) = 1/4.=> 4f(2) + 2f(1/2) = 2/4 ( 2 )
Lấy (2) trừ (1) ta đc : 3f(2) = 2/4 - 4 = -7/2
=> f(2) = -7/2: 3= -7/6