Bài toán 2. Chứng minh rằng nếu các chữ số a, b, c thỏa mãn điều kiện thì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu các số tự nhiên a,b,c thỏa mãn điều kiện a^2 + b^2 = c^2 thì abc chia hết cho 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
Rồi suy ra abc chia hêt cho 3.4.5 = 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
suy ra abc chia hêt cho 3.4.5 = 60
a+3c +a+2b = 17
=>2a +2b +3c = 17
=>2.(a+b)+3c=17
=>a+b+3c/2=17/2
=> N= a+b-c-17/2=a+b-c-a-b -3c/2=-c-3c/2
=> N là các số không âm
a \(2a>b;2a>0\Rightarrow2a+2a>b+0\Rightarrow4a>b\)
b \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\Rightarrow\left(4a-b\right)\left(a-b\right)=0\Rightarrow\hept{\begin{cases}4a-b=0\Rightarrow4a=b\\a-b=0\Rightarrow a=b\end{cases}}\)
sửa đề là : ab : bc = a : c .... ( có gạch ngang )
Ta có :
\(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}=\frac{9a+b}{10b}=\frac{999a+111b}{1110b}=\frac{999a+a+111b}{1110b+c}=\frac{1000a+111b}{1110b+c}=\frac{\overline{abbb}}{\overline{bbbc}}\)
ab¯¯¯¯¯bc¯¯¯¯=ac=9a+b10b=999a+111b1110b=999a+a+111b1110b+c=abbb¯¯¯¯¯¯¯¯¯bbbc¯¯¯¯¯¯¯¯¯