K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

Áp dụng BĐT AM-GM ta có:

\(P=x+\frac{2}{3}y+\frac{1}{3}y+2013\ge2\sqrt{x.\frac{2}{3}y}+\frac{1}{3}y+2013\)

\(\ge2\sqrt{\frac{2}{3}.6}+\frac{1}{3}.3+2013=2\sqrt{4}+1+2013=4+2014=2018\)

Nên GTNN của P là 2018 đạt được khi \(x=2,y=3\)

19 tháng 12 2018

\(x+y\ge2\sqrt{x.y}\)mà \(x\cdot y\ge6\)

\(\Rightarrow\)\(x+y\ge2\sqrt{x.y}\ge2\sqrt{6}\)

\(\Rightarrow\)\(x+y+2013\ge2\sqrt{x\cdot y}+2013\ge2\sqrt{6}+2013\)

dấu = xảy ra khi \(x+y+2013=2\sqrt{x\cdot y}+2013=2\sqrt{6}+2013\)

\(\Rightarrow\)Min  \(p=2\sqrt{6}+2013\)

Bạn xem hộ mình sai ở đâu giùm nha?

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:
Áp dụng BĐT Cô-si:

$x^3+1+1\geq 3x$

$y^3+1+1\geq 3y$

$z^3+1+1\geq 3z$

$\Rightarrow x^3+y^3+z^3+6\geq 3(x+y+z)\geq 3.3=9$

$\Rightarrow A=x^3+y^3+z^3\geq 3$ 

Vậy $A_{\min}=3$. Giá trị này đạt tại $x=y=z=1$

NV
7 tháng 5 2023

\(A=\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)-6\)

\(A\ge3\sqrt[3]{x^3}+3\sqrt[3]{y^3}+3\sqrt[3]{z^3}-6=3\left(x+y+z\right)-6\ge3.3-6=3\)

\(A_{min}=3\) khi \(x=y=z=1\)

16 tháng 4 2016

Áp dụng BĐT Cô-si:

X4+1\(\ge\) 2X2   Dấu = xảy ra <=> X=1

Y4 + 1\(\ge\)  2Y2  Dấu = xảy ra <=> Y=1

=> P\(\ge\)  2X2 . 2Y2+2013

        \(\ge\)   4X2Y2 +2013 

Vì 4X2Y2\(\ge\)    0

=> P    \(\ge\)    2013

Vậy Min P= 2013 tại X=Y=1

19 tháng 9 2019

\(K=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)

\(\ge\frac{4}{\left(x+y\right)^2}+12-\frac{20\left(x+y\right)^2}{4}=11\)

Check xem có sai chỗ nào ko:v

19 tháng 9 2019

Trời! Chứng minh vậy đọc ai hiểu được chời :)))

Vì \(\frac{1}{x^2+y^2}+\frac{1}{2xy}=\frac{1^2}{x^2+y^2}+\frac{1^2}{2xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)

\(\frac{3}{2xy}+24xy\ge2\sqrt{\frac{3}{2xy}.24xy}=12\)

Lại quên dấu bằng xảy ra kìa em. 

"=" xảy ra <=> x=y=1/2

29 tháng 4 2018

\(1+x+y=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)

\(\Leftrightarrow2\left(1+x+y\right)=2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\) 

\(\Leftrightarrow2+2x+2y=2\sqrt{x}+2\sqrt{xy}+2\sqrt{y}\)

\(\Leftrightarrow2x+2y+2-2\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)+\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2=0\)  

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=\sqrt{y}\\\sqrt{x}=1\\\sqrt{y}=1\end{cases}}\)

\(\Leftrightarrow x=y=1\)

\(\Rightarrow S=x^{2013}+y^{2013}=1+1=2\)

19 tháng 7 2020

\(T=21\left(x+\frac{1}{y}\right)+3\left(y+\frac{1}{x}\right)\)

\(=3\left(\frac{1}{x}+\frac{x}{9}\right)+21\left(\frac{1}{y}+\frac{y}{9}\right)+\frac{62x}{9}+\frac{2y}{3}\)

\(\ge6\sqrt{\frac{1}{x}\cdot\frac{x}{9}}+42\sqrt{\frac{1}{y}\cdot\frac{y}{9}}+\frac{62\cdot3}{9}+\frac{2\cdot3}{9}\)

\(=\frac{112}{3}\)

Đẳng thức xảy ra tại x=3;y=3

NV
20 tháng 1 2021

\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)

\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)