Chứng minh trong 2 số chẵn liên tiếp có một số là bội của 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số chẵn liên tiếp có dạng 2k và 2k+2 ( k thộc N )
+Nếu k = 2q ( q thuộc N ) thì 2k = 2.2q = 4q chia hết cho 4 hay là bội của 4 (1)
+Nếu k = 2q+1 ( q thuộc N ) thì 2k+2 = 2.(2q+1)+2 = 4q+4 = 4.(q+1) chia hết cho 4 hay là bội của 4 (2)
Từ (1) và (2) => ĐPCM
Bội của 6 tức là chia hết cho 6
Chia hết cho 6 thì số đó sẽ chia hết cho cả 2 và 3( vì ƯCLN của 2 và 3 =1)
Bạn cần cm chia hết cho 2 và 3
Mà số đó chẵn => chia hết cho 2
Bn cm chia hết cho 3 nữa là được
mk hướng dẫn thôi, bn tự làm nha
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi 2 số chẵn liên tiếp là 2.k và 2.k +2 ( k thuộc N)
· Nếu k là số lẻ suy ra k =2.q+1.( q thuộc N)
Khi đó: 2.k +2= 2. (2.q+1) +2 =2.2.q +2+2 = 4.q +4 chia hết cho 4
· Nếu k là số chẵn suy ra k =2.q ( q thuộc N)
Khi đó: 2.k = 2. 2.q = 4.q chia hết cho 4
Vậy trong hai số chẵn liên tiếp luôn có một số chia hết cho 4
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự