cho tam giác ABC vuông tại A, đg cao AH. kẻ HD vuông góc AB và HE vuông góc AC. gọi O là giao điểm AH và DE
a,C/m AH = DE ( đã biết làm
b, gọi P và Q ll là trung điểm của BH và CH. cm DEQP là h.thang vuông
c, cm O là trực tâm
d, cm S ABC = 2S DEQP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì HD vuông góc với AB
=> HDB = HDA = 90 độ
Mà BAC = 90 độ (gt)
=> BAC = BDH = 90 độ
Mà 2 góc này ở vị trí đồng vị
=> DH //AE
=> DHEA là hình thang
Mà HE vuông góc với AC
=> HEA = 90 độ
=> HEA = BAC = 90 độ
=> DHEA là hình thang cân
=> DE = AH ( hình thang cân hai đường chéo bằng nhau)
=> dpcm
câu a, dễ thấy tứ giác AEHD có 3 góc A=E=D=90 độ nên AEHD là hình chữ nhật, do đó AH=DE.
b.Xét tam giác BHD vuông tại D và có P là trung điểm BH do đso
\(\widehat{PDH}=\widehat{PHD}\)mà \(\widehat{PHD}=\widehat{QCE}\)( đồng vị)
và \(\widehat{QCE}=\widehat{QEC}\)
do đó ta có \(\widehat{PDH}=\widehat{QEC}\) mà HD//CE nên DP //QE . do đó DEPQ là hình thang
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra:AH=DE
bn tự kẻ hình nha, phần a bn bk làm r nên mk ko làm nx
b) ta có: OD = OH ( dễ chứng minh ADHE là h.c.n => OD = OH do t/c 2 đường chéo)
=> tg ODH cân tại O => ^HDO = ^DHO(1)
Xét tg DBH vuông tại D
có: BP = PH(gt)
=> DP = PH (t/c đường trung tuyến của tg vuông)
=> tg DPH cân tại P => ^PDH = ^PHD (2)
Từ (1);(2) => ^HDO + ^PDH = ^DHO + ^PHD = ^BHA = 90 độ
=> ^HDO + ^PDH = 90 độ => ^PDE = 90 độ => \(DP\perp DE⋮D\)
cmtt, ta có: \(QE\perp DE⋮E\)
=> DP // QE
Xét tứ giác DEQP
có: DP// QE; ^PDE = 90 độ
=> DEQP là h.thang vuông
c) ( Nối Q với O; gọi giao điểm của QO và AB là K)
ta có: OA = OH; DH // AC ( ADHE là h.c.n)
Xét tg ACH
có: OA = OH; HQ = QC
=> QO là đường trung bình của tg ACH
=> QO // AC
mà DH // AC (cmt) => QO // DH
Lại có: \(DH\perp AB⋮D\left(gt\right)\)
\(\Rightarrow QO\perp AB⋮K\)
Xét tg ABQ
có: \(QO\perp AB⋮K\left(cmt\right);AH\perp BQ⋮H\left(gt\right)\)
QO cắt AH tại O
=> O là trực tâm của tg ABQ
d) ta có: \(S_{\Delta DPB}=\frac{BP.DP}{2};S_{\Delta DPH}=\frac{PH.DP}{2}\)
mà BP = PH \(\Rightarrow S_{\Delta DPB}=S_{\Delta DPH}\)(1)
cmtt, ta có: \(S_{\Delta EQH}=S_{\Delta EQC}\)(2)
ta có: tg ADE = tg HED ( cgv-cgv) ( do ADHE là h.c.n => AD = HE; AE = HD)
\(\Rightarrow S_{\Delta ADE}=S_{\Delta HED}\) (3)
Từ (1);(2);(3) => ...
đến chỗ này bn chỉ cần cộng diện tích các tg lại, dễ chứng minh được đpcm