Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D đối xứng A qua M. Gọi K là trung tuyến của MC; E đối xứng với D qua K
a)C/M: Tứ giác ABCD là hình thoi
b) Tứ giác AMCE là hình chữ nhật
c) AM cắt BE tại I
d) CMR: AK,CI,EM đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
Suy ra: AD//MC và AD=MC
=>AD//MB và AD=MB
hay ABMD là hình bình hành
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a) Xét tứ giác ANBM có:
+ D là trung điểm NM (N là điểm đối xứng với M qua D).
+ D là trung điểm AB (gt).
\(\Rightarrow\) Tứ giác ANBM là hình bình (dhnb).
a: Xét tứ giác ANBM có
D là trung điểm của AB
D là trung điểm của NM
Do đó: ANBM là hình bình hành
mà \(\widehat{AMB}=90^0\)
nên ANBM là hình chữ nhật
Câu b đề thiếu rồi bạn
a, tứ giác AMCD có: ID=IM;IA=IC
⇒tứ giác AMCD là hình bình hành
Lại có:góc AMC=90 độ (ΔABC cân tại A có AM là đường trung tuyến)
⇒tứ giác AMCD là hình chữ nhật
b, Ta có AD//CM và AD=CM (tứ giác ADCM là hình chữ nhật)
mà B∈CM và BM=CM
⇒AD//BM và AD=BM
⇒tứ giác ABMD là hình bình hành