Giúp tui giải với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\lim\left(\sqrt[3]{n^3-2n}\left(\sqrt[]{n^2+n}-n\right)+n\sqrt[3]{n^3-2n}-n^2\right)\)
\(=\lim\left(\dfrac{n\sqrt[3]{n^3-2n}}{\sqrt[]{n^2+n}+n}-\dfrac{2n^2}{\sqrt[3]{\left(n^3-2n\right)^2}+n\sqrt[3]{n^3-2n}+n^2}\right)\)
\(=\lim\left(\dfrac{n\sqrt[3]{1-\dfrac{2}{n^2}}}{\sqrt[]{1+\dfrac{1}{n}}+1}-\dfrac{2}{\sqrt[3]{\left(1-\dfrac{2}{n^2}\right)^2}+\sqrt[3]{1-\dfrac{2}{n^2}}+1}\right)\)
\(=+\infty-\dfrac{2}{3}=+\infty\)
Gọi số ngày cả ba gặp lại nhau cần tìm là x ( ngày) ( x thuộc n sao) Theo đề bài ta có: x chia hết cho 15,20,12 và x ít nhất => x = BCNN ( 15, 20,12). Ta có:
15 = 3.5
20= 2 mũ 2 . 5
12= 2 mũ 2 . 3
=> BCNN ( 15, 20, 12) = 2 mũ 2 . 3. 5 = 60
Vậy số này ít nhất cả 3 tàu gặp lại nhau là 60 ngày
Câu 19:
19.1
Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\widehat{COM}+\widehat{DOM}=\dfrac{1}{2}\cdot180^0=90^0\)
19.2 CM+MD=DC
mà CM=CA
và MD=DB
nên DC=CA+BD
19.3
Xét ΔCOD vuông tại O có OM là đường cao
nên \(OM^2=MC\cdot MD\)
\(\Leftrightarrow R^2=AC\cdot BD\)
Vậy: Tích ACxBD không đổi
Bài 1:
\(a,x^2-y^2-2x+2y=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)
\(b,2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
\(c,3a^2-6ab+3b^2-12c^2=3\left(a-b\right)^2-12c^2=3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
\(d,x^2-25+y^2+2xy=\left(x-y\right)^2-25=\left(x-y-5\right)\left(x-y+5\right)\)
Bài 1:
\(e,a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b-c\right)\left(a+b\right)\)
\(f,x^2-2x-4y^2-4y=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)
\(g,x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
\(h,x^2\left(x-1\right)+16\left(1-x\right)=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)