Cho tam giác ABC cân tại A, đường cao AD, O là trung điểm của AC, điểm E đối xứng với điểm D qua điểm O.
a) Chứng minh tứ giác AECD là hình chữ nhật.
b) Gọi I là trung điểm của AD, chứng tỏ I là trung điểm của BE. c)
Cho AB = 10cm, BC = 12cm, tính diện tích tam giác OAD.
d) Đường thẳng OI cắt AB tại K. Tìm điều kiện của tam giác ABC để tứ giác AEDL là hình thang cân.
* Giả thiết kết luận bạn tự trình bày nhé
a) Ta có : AO = OC (gt) ( do D đối xứng với E qua O ) \(\widehat{ADC}=90^o\)(gt) . Vậy ADCE là hình chữ nhật
b) ADCE là hình chữ nhật thì AE // DC , AE = DC . Mà DC = BD ( do tam giác ABC cân ) . Suy ra , AE = BD
=> ABDE là hình bình hành . I là trung điểm của AD thì I là trung điểm của BE
c) Áp dụng định lí Py - ta - go cho tam giác vuông ABD
\(AD=\sqrt{AB^2-\left(\frac{BC}{2}\right)^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{\Delta OAD}=\frac{1}{2}S_{ADC}=\frac{1}{2}.\frac{1}{2}.AD.DC=\frac{1}{4}.8.6=12\left(cm\right)\)
d) Tứ giác ABDE là hình bình hành do đó AKDE là hình thang
Để AKDE là hình thang cân thì KD = AE
Mà \(\hept{\begin{cases}KD=\frac{1}{2}AC\\AE=\frac{1}{2}BC\end{cases}\Rightarrow}AC=BC\)
\(\Rightarrow\Delta ABC\)là tam giác đều