K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ko biết .com ^_^

969696969696969696969696969696969696969696969696969696969696969696969696969696966969969696969999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999969696969696969

F3

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

15 tháng 12 2018

\(\frac{a}{b}=\frac{c}{a}\Rightarrow a^2=bc\)

\(\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-c^2}{bc+c^2}=\frac{\left(b-c\right).\left(b+c\right)}{c.\left(b+c\right)}=\frac{b-c}{c}\)(DPCM)

31 tháng 8 2021

Giải:

Từ \(\frac{ab}{bc}=\frac{b}{c}\left(c\ne0\right)\Rightarrow\frac{ab}{b}=\frac{bc}{c}\left(a,b,c>0\right)\Rightarrow\frac{a}{b}=\frac{b}{c}\)

Tỉ lệ thức \(\frac{a}{b}=\frac{b}{c}\)hay \(ac=b^2\). Ta có: \(\left(a^2+b^2\right)c=\left(a^2+ac\right)=a^2c+ac^2\)

Tương tự có: \(\left(b^2+c^2\right)a=a^2c+ac^2\)

\(\Rightarrow\left(a^2+b^2\right)c=\left(b^2+c^2\right)a\)hay \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

1) Áp dụng tính chất của dãy tỉ số = nhau ta có:

ab/bc=b/c=ab−b/bc−c=(10a+b)−b/(10b+c)−c=10a/10b=a/b

⇒a^2/b^2=b^2/c^2=ab/bc=a/c(1)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

a^2/b^2=2=b^2/c^2=a^2+b^2/b^2+c^2(2)

Từ (1) và (2) ⇒a^2+b^2/b^2+c^2=a/c(đpcm)

21 tháng 10 2016

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

21 tháng 10 2016

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó

a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

từ\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

19 tháng 2 2019

        Lời giải

Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a.b}{b.c}=\frac{a}{c}\) (1)

Mặt khác,áp dụng t/c tỉ dãy số bằng nhau,ta có:\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\) (2)

Từ (1) và (2) ta có đpcm (điều phải chứng minh)

19 tháng 2 2019

tth, Cảm ơn bạn nhìu!

17 tháng 8 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(1\right)\)

mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

Từ (1) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)

17 tháng 8 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\Rightarrow\frac{\left(a+b^2\right)}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)

https://bingbe.com/search?category=question&q=Cho%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20a%20%2Fb%20%3D%20c%20%2Fd%20.%C2%A0Ch%E1%BB%A9ng%20minh%20c%C3%B3%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20sau%20%3A%0A%0A(%20a%20%2B%20c%C2%A0)2%C2%A0%2F%20(%20b%20%2B%20d%20)2%C2%A0%3D%20a2%C2%A0%20%2B%C2%A0%C2%A0c2%C2%A0%2F%20b2%20%C2%A0%2B%20d%C2%A02%C2%A0%0A%0A(%20Gi%E1%BA%A3%20thi%E1%BA%BFt%20c%C3%A1c%20t%E1%BB%89%20s%E1%BB%91%20%C4%91%E1%BB%81u%20c%C3%B3%20ngh%C4%A9a%20)%C2%A0%0A%0A%C2%A0

Xem ở lick này nhé (mình gửi cho)

Học tốt!!!!!!!!!!!!!

28 tháng 7 2019

@@ chị linh Link dài vậy giải lun phải hơn không

6 tháng 7 2018

a/\(\left(2-x\right)\times-3=\left(3x-1\right)\times4\)4

\(\Rightarrow-6+3x=12x-4\)

\(\Rightarrow-2=9x\)

\(\Rightarrow x=\frac{-2}{9}\)

bài b cx tương tự nha

ta có;\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)(THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU)

\(\Rightarrowđpcm\)

27 tháng 9 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

a)\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(1)

\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

b)\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(1)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)(2)

Từ (1) và(2)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

c)\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(ck+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\)(1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)

Từ (1) và(2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

k cho mình nhé