K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

\(\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\frac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\frac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\frac{x^3+y^3}{x\left(x^3-y^3\right)}\)

Ta có: \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)\left(x^3+y^3\right)}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}\)

\(=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

7 tháng 2 2021

\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}=\dfrac{x^2-xy+y^2}{x^3+xy^2-x^2y-y^3}\)

22 tháng 2 2020

tôi cũng cung thiên yết nè nhưng lại là cậu bé mà thiên yết hợp với cung gì nhất vậy add friend nha

2 tháng 12 2017

Điều kiện \(x\ne\pm3;y\ne-2\):

 \(P=\frac{2x+3y}{xy+2x-3y-6}-\frac{6-xy}{xy+2x+3y+6}-\frac{x^2+9}{x^2-9}.\)

=> \(P=\frac{2x+3y}{\left(y+2\right)\left(x-3\right)}-\frac{6-xy}{\left(y+2\right)\left(x+3\right)}-\frac{x^2+9}{\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{\left(2x+3y\right)\left(x+3\right)-\left(6-xy\right)\left(x-3\right)-\left(x^2+9\right)\left(y+2\right)}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{2x^2+3xy+6x+9y-6x+x^2y+18-3xy-x^2y-9y-2x^2-18}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)

\(P=\frac{0}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}=0\)

=> P=0 (với mọi x khác 3, -3 và y khác -2)

\(\dfrac{2a\cdot x^2-4ax+2a}{5b-5bx^2}\)

\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)

\(=\dfrac{-2a\left(x-1\right)^2}{5b\left(x-1\right)\left(x+1\right)}=\dfrac{-2a\left(x-1\right)}{5b\left(x+1\right)}\)

\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)

\(=\dfrac{4x\cdot x-4x\cdot y}{5x^2\cdot x-5x^2\cdot y}\)

\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)

\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)

\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)

=x+y-z

\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

29 tháng 10 2020

\(\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)( ĐKXĐ tự tìm nhé *)

\(=\frac{\left(x^3\right)^2+2x^3y^3+\left(y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\frac{\left(x^3+y^3\right)^2}{x\left[\left(x^3\right)^2-\left(y^3\right)^2\right]}\)

\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}\)

\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^3+y^3}{x\left(x^3-y^3\right)}=\frac{x^3+y^3}{x^4-xy^3}\)

b: \(=\dfrac{\left(x+3\right)^2-y^2}{2\left(x-y+3\right)}\)

\(=\dfrac{\left(x+3+y\right)\left(x+3-y\right)}{2\left(x-y+3\right)}=\dfrac{x+y+3}{2}\)

Bài 1: 

\(\dfrac{x^2-3}{x+\sqrt{3}}=\dfrac{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}{x+\sqrt{3}}=x-\sqrt{3}\)

Bài 2: 

a) Ta có: \(A=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\)

\(=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)

\(=4\sqrt{x+1}\)

b) Để A=16 thì \(\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

hay x=15

29 tháng 7 2021

Viết latex cho dễ hiểu bn ơi

Bài 1:

a: ĐKXĐ: \(x+4\ne0\)

=>\(x\ne-4\)

b: ĐKXĐ: \(2x-1\ne0\)

=>\(2x\ne1\)

=>\(x\ne\dfrac{1}{2}\)

c: ĐKXĐ: \(x\left(y-3\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)

d: ĐKXĐ: \(x^2-4y^2\ne0\)

=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)

=>\(x\ne\pm2y\)

e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)

=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)

 Bài 2:

a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)

b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)

\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)

\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)

\(=\dfrac{x+y}{x-y}\)

c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)

\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)

\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)

\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)

\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)

e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)

\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)

\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)

g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)

\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)

\(=\dfrac{x+4}{x+2}\)