Cho tam giác ABC. Gọi D,E lần lượt là trung điểm của các cạnh AB, AC Trên tia đối của tia BC lấy điểm M sao cho DM=DC .Trên tia đối của tia EB lấy điểm N sao cho EN=EB. Chứng minh:
A) 🔼DBC = 🔼DAM
B) AM // BC
C) Ba điểm M, A, N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác ADM và tam giac BDC ta có
MD=DC (gt)
AD=DB(D là trung điểm AB)
góc ADM=góc BDC (2 góc doi đỉnh)
-> tam giác ADM= tam giác BDC (c-g-c)
b) ta có
góc MAD = góc DBC ( tam giác ADM= tam giác BDC )
mà 2 góc nẳm o vị trí soletrong
nên AM//BC
c)
xét tam giác AEN và tam giac BEC ta có
EN=EB (gt)
AE=EC(E là trung điểm AC)
góc AEN=góc BEC (2 góc doi đỉnh)
-> tam giác ANE = tam giác CBE (c-g-c)
-> góc NAE = góc BCE (2 góc tương ứng
mà 2 góc nằm o vi trí sole trong
nên AN//BC
ta có
AN//BC (cmt)
AM//BC (cmb)
-> AM trùng AN
-> A,M,N thẳng hàng
*-Bạn tự vẽ hình nhé!*
CM:a) Xét tam giác ADM và tam giác BDC có:
AD=BD(D là trung điểm của AB)
Góc ADM=góc BDC(đối đỉnh)
DM=DC(gt)
=> tgiac ADM = tgiac BDC (c.g.c)
b) =>góc MAD= góc DBC (hai góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AM song song BC (1)
c) chứng minh tương tự, ta có: tgiac AEN=tgiac CEB(c.g.c)
=> góc NAE= góc CEB(hai góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> BC song song AN (2)
Từ (1) và (2)=> MA song song BC; AN song song BC
=> A,M,N thẳng hàng (ơ-clit)
*- cho mk nha!!!-Mơn b *:)*
\(\left\{{}\begin{matrix}AD=DB\\MD=DC\\\widehat{ADM}=\widehat{BDC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AMD=\Delta BDC\left(c.g.c\right)\\ \Rightarrow\widehat{DAM}=\widehat{ABC}\left(1\right)\\ \left\{{}\begin{matrix}AE=EC\\EN=BE\\\widehat{AEN}=\widehat{BEC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AEN=\Delta CEB\left(c.g.c\right)\\ \Rightarrow\widehat{EAN}=\widehat{ACB}\left(2\right)\)
Xét tam giác ABC: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^0\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{BAC}+\widehat{ADM}+\widehat{AEN}=180^0\\ \Rightarrow\widehat{MAN}=180^0\)
Do đó \(\widehat{MAN}\) là góc bẹt hay M,A,N thẳng hàng
Lại có \(AM=BC\left(\Delta AMD=\Delta BDC\right);AN=BC\left(\Delta AEN=\Delta CEB\right)\)
Vậy AM=AN hay A là trung điểm MN
a: Xét ΔDBC và ΔDAM có
DB=DA
góc BDC=góc ADM
DC=DM
Do đó: ΔDBC=ΔDAM
b: ΔDBC=ΔDAM
nên góc DBC=góc DAM
=>AM//BC
c: Xét tứ giác ABCN có
E là trung điểm chung của AC và BN
nên ABCN là hình bình hành
=>AN//BC
=>M,A,N thẳng hàng