K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 12 2018

\(x^3+x^2+x=m\left(x^2+1\right)^2\Leftrightarrow\dfrac{x^3+x^2+x}{\left(x^2+1\right)^2}=m\)

Xét hàm \(f\left(x\right)=\dfrac{x^3+x^2+x}{\left(x^2+1\right)^2}\)

\(f'\left(x\right)=\dfrac{\left(3x^2+2x+1\right)\left(x^2+1\right)^2-4x\left(x^2+1\right)\left(x^3+x^2+x\right)}{\left(x^2+1\right)^4}\)

\(f'\left(x\right)=\dfrac{\left(x^2+1\right)\left(3x^2+2x+1\right)-4x\left(x^3+x^2+x\right)}{\left(x^2+1\right)^3}\)

\(f'\left(x\right)=\dfrac{-x^4-2x^3+2x+1}{\left(x^2+1\right)^3}=\dfrac{\left(1-x\right)\left(x+1\right)^3}{\left(x^2+1\right)^3}\)

\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có đúng 2 cực trị

\(\Rightarrow\) Đường thẳng \(y=m\) cắt đồ thị hàm số \(y=f\left(x\right)\) tại tối đa 3 điểm hay phương trình \(f\left(x\right)=m\) có tối đa 3 nghiệm phân biệt

\(\Rightarrow\) Không tồn tại m để phương trình đã cho có 4 nghiệm phân biệt

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

12 tháng 4 2023

a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:

\(3^2-m.3+2m-4=0\)

\(\Leftrightarrow9-3m+2m-4=0\)

\(\Leftrightarrow m-5=0\)

\(\Leftrightarrow m=5\)

Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:

\(\Delta=\left(-5\right)^2-4.1.6=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)

Vậy nghiệm còn lại là \(x=2\)

21 tháng 3 2021

a, Với m=1 thay vào pt 

Ta có

\(x^2+x-1=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

b, 

Thay x=2 vào pt

ta có

\(4-2-3m+2=0\)

\(\Leftrightarrow4-3m=0\)

\(\Rightarrow m=\dfrac{4}{3}\)

c, Ta có

\(\Delta=1-4\left(-3m+2\right)\)

\(=12m-7\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

\(\Rightarrow12m-7>0\)

\(\Rightarrow m>\dfrac{7}{12}\)

d, 

Để ptcos nghiệm kép thì \(\Delta=0\)

\(\Rightarrow12m-7=0\)

\(\Rightarrow m=\dfrac{7}{12}\)

e, 

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Rightarrow m< \dfrac{7}{12}\)

1:

Δ=(2m-4)^2-4(m^2-3)

=4m^2-16m+16-4m^2+12=-16m+28

Để PT có hai nghiệm phân biệt thì -16m+28>0

=>-16m>-28

=>m<7/4

2: x1^2+x2^2=22

=>(x1+x2)^2-2x1x2=22

=>(2m-4)^2-2(m^2-3)=22

=>4m^2-16m+16-2m^2+6=22

=>2m^2-16m+22=22

=>2m^2-16m=0

=>m=0(nhận) hoặc m=8(loại)

3: A=x1^2+x2^2+2021

=2m^2-16m+2043

=2(m^2-8m+16)+2011

=2(m-4)^2+2011>=2011

Dấu = xảy ra khi m=4

a: Khi m=1 thì (1) sẽ là:

x^2-4x-5=0

=>x=5 hoặc x=-1

Trường hợp 1: m=10

Phương trình sẽ là -40x+6=0

hay x=3/20

=>m=10 sẽ thỏa mãn trường hợp a

Trường hợp 2: m<>10

\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)

\(=16m^2-4\left(m^2-14m+40\right)\)

\(=16m^2-4m^2+56m-160\)

\(=12m^2+56m-160\)

\(=4\left(3m^2+14m-40\right)\)

\(=4\left(3m^2-6m+20m-40\right)\)

\(=4\left(m-2\right)\left(3m+20\right)\)

a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0

=>m>=2 hoặc m<=-20/3

b: Để phương trình có hai nghiệm phân biệt đều dương thì 

\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)

\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)