Cho tam giác ABC vuông ở A,BC=5cm,AC=2AC.
a) Tinh AC=?
b) Từ A kẻ đường cao AH lấy điểm I sao cho AI=1/3AH .Từ C kẻ đường thẳng Cx song song với AH . Gọi giao điểmcua Cx với BỊ là D.Tính diện tích tứ giác AHCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đặt AB=x=>AC=2x
áp dụng định lý Pitago zô tam giác zuông ABC
\(AB^2+AC^2=BC^2=>x^2+4x^2=25\)
\(=>5x^2=25=>x^2=5\)
=>\(x=\sqrt{5}\)
\(=>AB=\sqrt{5};AC=2\sqrt{5}\)
b) Ta có \(AH//CD\)( từ zuông góc đến song song )
=> AHCD là hình thang
Áp dụng HTL ta có
\(AH=\frac{AB.AC}{BC}=\frac{\sqrt{5}.2\sqrt{5}}{5}=2=>AI=\frac{1}{3}AH=\frac{1}{3}=>HI=\frac{2}{3}\)
Áp dụng đinh lý ta lét
\(\frac{HI}{CD}=\frac{BH}{BC}=\frac{\frac{AB^2}{BC}}{BC}=\frac{AB^2}{BC^2}=\frac{5}{25}=\frac{1}{5}=>CD=5HI=10\)
Ta có \(HC=\frac{AC^2}{BC}=\frac{\left(2\sqrt{5}\right)^2}{5^2}=\frac{4}{5}\)
zậy
\(S_{AHCD}=\frac{1}{2}\left(AH+CD\right).HC=\frac{1}{2}\left(2+10\right).\frac{4}{5}=\frac{25}{4}\)
\(AB^2+AC^2=BC^2=25\Rightarrow5AC^2=25\Leftrightarrow AC=\sqrt{5}\left(cm\right)\Rightarrow AB=2\sqrt{5}\left(cm\right)\)\(CH=\dfrac{AC^2}{BC}=1\left(cm\right)\Rightarrow BH=5-1=4\left(cm\right)\\ AH=\dfrac{AB.AC}{BC}=2\\ AI=\dfrac{1}{3}AH=\dfrac{2}{3};HI=\dfrac{2}{3}AH=\dfrac{4}{3}\\ CD\text{//}AH\Rightarrow CD\text{//}HI\Rightarrow\dfrac{HI}{CD}=\dfrac{BH}{BC}=\dfrac{4}{5}\\ \Rightarrow CD=\dfrac{5}{4}HI=\dfrac{5}{4}\cdot\dfrac{4}{3}=\dfrac{5}{3}\\ \Rightarrow S_{AHCD}=\dfrac{1}{2}\cdot HC\cdot\left(AH+CD\right)=\dfrac{1}{2}\cdot1\cdot\left(2+\dfrac{5}{3}\right)=\dfrac{11}{6}\left(cm^2\right)\left(AH\text{//}CD\text{ nên }AHCD\text{ là hình thang}\right)\)
AC=2AC là sao ạ
viết lộn AB=2AC