Cho một đường tròn (O) và hai dây cung bằng nhau AB=AC. Trên cung nhỏ AC lấy một điểm M. Gọi S là giao điểm của hai đường thẳng AM và BC. Chứng minh góc ASC= góc MCA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đường tròn (O) có dây AB = AC
+ là góc có đỉnh ngoài đường tròn chắn hai cung
Kiến thức áp dụng
+ Trong một đường tròn, hai dây bằng nhau căng hai cung bằng nhau.
+ Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
Ta có: \(\widehat{ASC}=\dfrac{sđ\left(\widehat{AB}-\widehat{MC}\right)}{2}\) (1)
(\(\widehat{ASC}\) là góc có đỉnh nằm bên ngoài đường tròn (O)) và \(\widehat{MCA}=\dfrac{sđ\widehat{AM}}{2}\) (2)
(góc nội tiếp chắn cung \(\widehat{AM}\))
Theo giả thiết thì:
AB = AC => \(\widehat{AB}\) = \(\widehat{AC}\) (3)
Từ (1), (2), (3) suy ra:
\(\widehat{AB}-\widehat{MC}=\widehat{AC}-\widehat{MC}=\widehat{AM}\)
Từ đó \(\widehat{ASC}=\widehat{MCA}\).
b: Xét ΔAON vuông tại O và ΔAMB vuông tại M co
góc OAN chung
=>ΔAON đồng dạngvới ΔAMB
=>AO/AM=AN/AB
=>AO*AB=AM*AN
a: góc AMB=1/2*180=90 độ
góc IOA+góc IMA=90+90=180 độ
=>IMAO nội tiếp
b: góc MIC=1/2(sđ cung MC+sđ cung DB)
=1/2(sđ cung MC+sđ cung CB)
=1/2*sđ cung MB
=góc MDB
c: Xét ΔDAK và ΔDMA có
góc DAK=góc DMA
góc ADK chung
=>ΔDAK đồng dạng với ΔDMA
=>DA^2=DK*DM
=>DK*DM ko phụ thuộc vào vị trí của M
( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung BC)
góc ASC=1/2(sđ cung AB-sđ cung CM)
=1/2(sđ cung AC-sđ cung CM)
=1/2*sđ cungAM
góc MCA=1/2cung AM
=>góc ASC=góc MCA