tìm n nguyên: để
\(n^3-8n^2+2n\) chia hết cho \(n^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, -4(2n+3)+11 chia hết cho 2n+3
suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)
suy ra 2n+3 thuộc ước của 11
hay 2n+3 thuộc 1;-1;11;-11
hay n thuộc -1;-2;4;-7
vậy n thuộc -1;-2;4;-7
các bài khác cũng nhân ra như vậy là tìm được n
a, -4(2n+3)+11 chia hết cho 2n+3
suy ra 11 chia hết cho 2n+3( do -4(2n+3) chia hết cho 2n+3)
suy ra 2n+3 thuộc ước của 11
hay 2n+3 thuộc 1;-1;11;-11
hay n thuộc -1;-2;4;-7
vậy n thuộc -1;-2;4;-7
8n + 3 chia hết cho 2n - 1
=>8n-4+7 chia hết cho 2n-1
=>7 chia hết cho 2n-1
=>2n-1 thuộc Ư(7)={-1;1;-7;7}
=>2n thuộc{0;2;-6;8}
=>n thuộc{0;1;-3;4}
Ta có:8n+3 chia hết cho 2n-1
=>8n-4+7 chia hết cho 2n-1
=>4(2n-1)+7 chia hết cho 2n-1
Mà 4(2n-1) chia hết cho 2n-1
=>7 chia hết cho 2n-1
=>2n-1\(\in\)Ư(7)={-7,-1,1,7}
=>2n\(\in\){-6,0,2,8}
=>n\(\in\){-3,0,1,4}
\(a,n^2+4n+96⋮n+1\)
\(\Rightarrow n^2+n+3n+96⋮n+1\)
\(\Rightarrow n\left(n+1\right)+3n+3+93\)
\(\Rightarrow n\left(n+1\right)+3\left(n+1\right)+93⋮n+1\)
\(\Rightarrow\left(n+3\right)\left(n+1\right)+93⋮n+1\)
\(\Rightarrow93⋮n+1\)
=> Tự lập bảng nha OK
Phần b tương tự
Bài 1:
$A=(n-1)(2n-3)-2n(n-3)-4n$
$=2n^2-5n+3-(2n^2-6n)-4n$
$=-3n+3=3(1-n)$ chia hết cho $3$ với mọi số nguyên $n$
Ta có đpcm.
Bài 2:
$B=(n+2)(2n-3)+n(2n-3)+n(n+10)$
$=(2n-3)(n+2+n)+n(n+10)$
$=(2n-3)(2n+2)+n(n+10)=4n^2-2n-6+n^2+10n$
$=5n^2+8n-6=5n(n+3)-7(n+3)+15$
$=(n+3)(5n-7)+15$
Để $B\vdots n+3$ thì $(n+3)(5n-7)+15\vdots n+3$
$\Leftrightarrow 15\vdots n+3$
$\Leftrightarrow n+3\in\left\{\pm 1;\pm 3;\pm 5;\pm 15\right\}$
$\Rightarrow n\in\left\{-2;-4;0;-6;-8; 2;12;-18\right\}$
Ta có: n3−8n2+2n⋮(n2+1)⇔(n3+n)−(8n2+8)+n+8⋮n2+1⇔n(n2+1)−8(n2+1)+n+8⋮n2+1
⇒n+8⋮n2+1⇒(n−8)(n+8)⋮n2+1⇔(n2+1)−65⋮n2+1
⇒65⋮n2+1
mà dễ dàng nhận thấy n2+1≥1 nên n2+1ϵ{1;5;13;65} hay n2ϵ{0;4;12;64}
⇒nϵ{−8;−2;0;2;8}
Thay lần lượt các giá trị của x tìm được, ta nhận các giá trị n={−8;0;2}
Vậy n={-8;0;2} thì \(n^3-8n^2+2n\) chia hết n2+1