Gọi x, y là các số nguyên dương sao cho \(A=\dfrac{x^4+y^4}{15}\) cũng là số nguyên dương. Chứng minh rằng : x và y đều chia hết cho 3 và 5. Từ đó tìm giá trị nhỏ nhất của A.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
VT
29 tháng 12 2017
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé
13 tháng 12 2020
+) Vì y và x tỉ lệ thuận với nhau nên:
hay
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.