K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

Đặt:\(\dfrac{a}{b}=\dfrac{c}{d}=@\Leftrightarrow\left\{{}\begin{matrix}a=b@\\c=d@\end{matrix}\right.\)

khi đó: \(\dfrac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\dfrac{b^{2017}@^{2017}+b^{2017}}{d^{2017}@^{2017}+d^{2017}}=\dfrac{b^{2017}\left(@^{2017}+1\right)}{d^{2017}\left(@^{2017}+1\right)}=\dfrac{b^{2017}}{d^{2017}}\)

\(\dfrac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}=\dfrac{\left(b@-b\right)^{2017}}{\left(d@-d\right)^{2017}}=\dfrac{\left[b\left(@-1\right)\right]^{2017}}{\left[d\left(@-1\right)\right]^{2017}}=\dfrac{b^{2017}}{d^{2017}}\)

Ta có điều phải chứng minh

8 tháng 1 2024

pip install pygame

 

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{b^{2017}\cdot k^{2017}+d^{2017}\cdot k^{2017}}{b^{2017}+d^{2017}}=k^{2017}\)

\(\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}=\dfrac{\left(bk+dk\right)^{2017}}{\left(b+d\right)^{2017}}=k^{2017}\)

Do đó: \(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)

17 tháng 8 2017

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c+a-c}{b+d+b-d}=\dfrac{2a}{2b}=\dfrac{a}{b}\left(1\right)\)

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c-a+c}{b+d-b+d}=\dfrac{2c}{2d}=\dfrac{c}{d}\left(1\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Thay vào tính

20 tháng 8 2017

tks bn rất nhìu nha

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow \left\{\begin{matrix} a=b\\ b=c\\ c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Khi đó: \(\frac{a^{2017}+b^{2017}}{c^{2017}}=\frac{a^{2017}+a^{2017}}{a^{2017}}=2\)

19 tháng 11 2017

con cảm ơn cô

4 tháng 9 2017

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Tới đây thì đơn giản rồi nhé.

18 tháng 12 2017

máu biếng tới tận não:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\left[\left(a+b\right)^3+c^2\right]-ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\dfrac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}=0\)

\(\Leftrightarrow\left(a+b+c\right)\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a-b=b-c=c-a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Mà a,b,c >0

=> a = b = c

=> S = 3

\(\)

22 tháng 12 2019

sao mấy bn giỏi wá z

Mấy bài này mik chả hỉu j cả T^T