Giải hệ phương trình sau \(\left\{{}\begin{matrix}4x+3y=11\\4x^2+9y^2-12xy+9y-10=0\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2\left(2x-3y\right)+9y-11=0\\\left(2x-3y\right)^2+9y-10=0\end{matrix}\right.\)
Trừ pt dưới cho trên ta được:
\(\left(2x-3y\right)^2-2\left(2x-3y\right)+1=0\Leftrightarrow\left(2x-3y-1\right)^2=0\Leftrightarrow2x-3y=1\)
Kết hợp với pt đầu ta có hệ:
\(\left\{{}\begin{matrix}2x-3y=1\\4x+3y=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
làm cách nào ra được hệ pt này vậy bạn \(\left\{{}\begin{matrix}2\left(2x-3y\right)+9y-11=0\\\left(2x-3y\right)^2+9y-10=0\end{matrix}\right.\)
bạn có thể giải rõ ra được ko ạ
\(\left\{{}\begin{matrix}x^3-y^3=35\\2x^2+3y^2=4x-9y\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^3-x^3=-35\\3y^2+9y+2x^2-4x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y^3-x^3=-35\\9y^2+27y+6x^2-12x=0\end{matrix}\right.\)
\(\Rightarrow\left(y^3+9y^2+27y\right)-\left(x^3-6x^2+12x\right)=-35\)
\(\Rightarrow\left(y^3+9y^2+27y+27\right)-\left(x^3-6x^2+12x-8\right)=0\)
\(\Rightarrow\left(y+3\right)^3-\left(x-2\right)^2=0\)
\(\Rightarrow\left(y-x+5\right)\left[\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2\right]=0\)
*Với \(x=y+5\). Thay vào (1) ta được:
\(2\left(y+5\right)^2+3y^2=4\left(y+5\right)-9y\)
\(\Leftrightarrow2y^2+20y+50+3y^2=4y+20-9y\)
\(\Leftrightarrow5y^2+25y+30=0\Leftrightarrow y^2+5y+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=-3\end{matrix}\right.\)
*\(y=-2\Rightarrow x=3\) ; \(y=-3\Rightarrow x=2\).
*Với \(\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2=0\). Ta có:
\(\left(y+3\right)^2+\left(y+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(y+3\right)+\dfrac{\left(x-2\right)}{2}\right]^2+\dfrac{3}{4}\left(x-2\right)^2\ge0\)
Dấu "=" xảy ra khi \(x=2;y=-3\)
Vậy \(x=2;y=-3\)
Thử lại ta có nghiệm (x;y) của hệ đã cho là \(\left(3;-2\right),\left(2;-3\right)\)
b: \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y^2+18y+9+y^2-6y-6-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}10y^2+10y-20=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y^2+y-2=0\\x=3y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(y+2\right)\left(y-1\right)=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\in\left\{-2;1\right\}\\x=3y+3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;-2\right);\left(6;1\right)\right\}\)
a: \(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y=4x-6\\3x^2+6xy-x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{9}x-\dfrac{2}{3}\\3x^2+6x\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)-x+3\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x^2+\dfrac{8}{3}x^2-4x-x+\dfrac{4}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{17}{3}x^2-\dfrac{11}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x^2-11x-6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)\left(17x+6\right)=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}17x+6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=\dfrac{4}{9}\cdot1-\dfrac{2}{3}=\dfrac{4}{9}-\dfrac{2}{3}=-\dfrac{2}{9}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{6}{17}\\y=\dfrac{4}{9}\cdot\dfrac{-6}{17}-\dfrac{2}{3}=\dfrac{-14}{17}\end{matrix}\right.\end{matrix}\right.\)
a: =>8x+2y=4 và 8x+3y=5
=>y=1 và 4x=2-1=1
=>x=1/4 và y=1
b: 3x-2y=11 và 4x-5y=3
=>12x-8y=44 và 12x-15y=9
=>7y=35 và 3x-2y=11
=>y=5 và 3x=11+2*y=11+2*5=21
=>x=7 và y=5
c: 5x-4y=3 và 2x+y=4
=>5x-4y=3 và 8x+4y=16
=>13x=19 và 2x+y=4
=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13
d: 3x-y=5 và 5x+2y=28
=>6x-2y=10 và 5x+2y=28
=>11x=38 và 3x-y=5
=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11
a: =>8x+2y=4 và 8x+3y=5
=>y=1 và 4x=2-1=1
=>x=1/4 và y=1
b: 3x-2y=11 và 4x-5y=3
=>12x-8y=44 và 12x-15y=9
=>7y=35 và 3x-2y=11
=>y=5 và 3x=11+2*y=11+2*5=21
=>x=7 và y=5
c: 5x-4y=3 và 2x+y=4
=>5x-4y=3 và 8x+4y=16
=>13x=19 và 2x+y=4
=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13
d: 3x-y=5 và 5x+2y=28
=>6x-2y=10 và 5x+2y=28
=>11x=38 và 3x-y=5
=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11
Không biết em có làm sai không:
ĐKXĐ: \(x,y\ge0\).
Đặt 2x = a; 3y = b.
HPT trở thành:
\(\left\{{}\begin{matrix}\left(\sqrt{5}\right)^a-\left(\sqrt{5}\right)^b+\left(a-b\right)\left(ab+12\right)=0\\a^2+b^2=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=16\\\left(\sqrt{5}\right)^a-\left(\sqrt{5}\right)^b+\left(b-a\right)\left(a^2+b^2\right)+a^3-b^3+12\left(a-b\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=16\\\left(\sqrt{5}\right)^a+a^3-4a=\left(\sqrt{5}\right)^b+b^3-4b=0\left(1\right)\end{matrix}\right.\).
Giả sử \(a\ge b\Rightarrow\left(\sqrt{5}\right)^a\ge\left(\sqrt{5}\right)^b\). Mà \(\left(a^3-4a\right)-\left(b^3-4b\right)=\left(a-b\right)\left(a^2+ab+b^2-4\right)\ge0\) nên VT(1) \(\ge\) VP(1).
Do đẳng thức xảy ra nên ta có a = b. Thay vào ta tìm được a = b = \(2\sqrt{2}\) nên \(x=\sqrt{2};y=\dfrac{2\sqrt{2}}{3}\).
\(\left\{{}\begin{matrix}\left(\sqrt{5}\right)^{2x}-\left(\sqrt{5}\right)^{3y}=\left(3y-2x\right)\left(6xy+12\right)\left(1\right)\\4x^2+9y^2=16\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Rightarrow4x^2+9y^2-4=12\) the vo (1)
\(\Rightarrow\left(\sqrt{5}\right)^{2x}-\left(\sqrt{5}\right)^{3y}=\left(3y-2x\right)\left(6xy+4x^2+9y^2-4\right)\)
\(\Leftrightarrow\left(\sqrt{5}\right)^{2x}-\left(\sqrt{5}\right)^{3y}=27y^3-8x^3-12y+8x\)
\(\Leftrightarrow\left(\sqrt{5}\right)^{2x}+\left(2x\right)^3-4.\left(2x\right)=\left(\sqrt{5}\right)^{3y}+\left(3y\right)^3-4.\left(3y\right)\left(3\right)\)
Xét hàm số \(f\left(t\right)=\left(\sqrt{5}\right)^{2t}+\left(2t\right)^3-4.2t\) đồng biến trên R
\(\Rightarrow\left(3\right):f\left(2x\right)=f\left(3y\right)\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\4x^2+9y^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=\dfrac{2\sqrt{2}}{3}\end{matrix}\right.\)