K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 12 2018

ĐKXĐ: \(x\ge\dfrac{5}{3}\)

\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

\(\Leftrightarrow x-3=0\Rightarrow x=3\)

Do \(\dfrac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{1}{\sqrt{3x-5}+\sqrt{2x-2}}>0\) \(\forall x\ge\dfrac{5}{3}\)

Vậy pt có nghiệm duy nhất \(x=3\)

9 tháng 12 2018

@Nguyễn Việt Lâm @TRẦN MINH HOÀNG @ Mashiro Shiina

NV
14 tháng 4 2020

ĐKXĐ: \(x\ge\frac{5}{3}\)

\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}\ge0\)

\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}\ge0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)\ge0\)

\(\Leftrightarrow x-3\ge0\) (do ngoặc đằng sau luôn dương)

\(\Rightarrow x\ge3\)

21 tháng 11 2019

đề đungs \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}\). ĐK: \(x\ge\frac{5}{3}\)

\(\Leftrightarrow\)\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)

\(\Leftrightarrow\)\(\frac{10x+1-9x-4}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{3x-5-2x+2}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

\(\Leftrightarrow\)\(x=3\) ( nhan ) 

25 tháng 11 2023

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)

\(\Leftrightarrow25x-4x=-8-75\)

\(\Leftrightarrow21x=-83\)

hay \(x=-\dfrac{83}{21}\)

b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)

\(\Leftrightarrow\left|2x+1\right|=3x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)

d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)

\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)

\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)

\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)

\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)

\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)

\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)

vậy: Phương trình vô nghiệm

23 tháng 12 2020

ĐK: \(x\ge\dfrac{5}{3}\)

\(pt\Leftrightarrow\left(\sqrt{10x+1}-\sqrt{9x+4}\right)+\left(\sqrt{3x-5}-\sqrt{2x-2}\right)=0\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)

Dễ thấy \(\dfrac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\dfrac{1}{\sqrt{3x-5}+\sqrt{2x-2}}>0\)

\(pt\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\left(tm\right)\)

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~