K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2023

ối dồi ôi

22 tháng 12 2021

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

22 tháng 12 2021

a) Thấy 

Từ đây ta xét t/g MAC và BAN ta có:

=>MA=BA; AC=AN

=>

=>ΔMAC=ΔBAN(c−g−c)⇒MC=BNΔMAC=ΔBAN(c−g−c)⇒MC=BN

đpcm.

b)

Ta gọi giao điểm của MC  và BN là 1 điểm D

Ta có: ˆDBA=ˆDMA(ΔMAC=ΔBAN(c−g−c))DBA^=DMA^(ΔMAC=ΔBAN(c−g−c))

Nên ˆMBD+ˆBMD=ˆMBA+ˆDBA+ˆBMD=ˆMBA+ˆDMA+ˆBMD=ˆMBAMBD^+BMD^=MBA^+DBA^+BMD^=MBA^+DMA^+BMD^=MBA^

+ˆBMA=90o+BMA^=90o

Xét t/g MBD có ˆMBD+ˆBMD=90o⇒ˆBMD=90oMBD^+BMD^=90o⇒BMD^=90o

⇒BN⊥MC⇒BN⊥MC

Bổ sung D giao điểm nhé vào hình nha bn.

c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm

Áp dụng định lý pi-ta-go ta có:

Cho t/g MAB và NAC thì MB=NC=4√2(cm)42(cm)

Khi ABC đều cạnh 4cm thì AMC = NAB là t/g  vuông cân có  góc ở đỉnh : 90o+60o=150o

=>ˆAMC=ˆACMAMC^=ACM^= (180o-150o):2=15o

Thì 

Lại có 

Vì t/gMAN cân tại A nên = (180o-120o) : 2 =30o

=> 

=>

=> BC//MN ( so le trong)

đpcm.

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE⊥BC

c: Xét ΔDEC vuông tại E và ΔDAM vuông tại A có 

DE=DA

EC=AM

Do đó: ΔDEC=ΔDAM

Suy ra: DC=DM

4 tháng 12 2022

Cảm ơn bạn nhiều

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do đó: ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>DA=DE

16 tháng 12 2021

cứu với mình cần gấp huhu

16 tháng 12 2021

a: Xét ΔABD và ΔEBD có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

14 tháng 12 2021

giúp mình với mọi người ơi

 

14 tháng 12 2021

làm ơn ạ 

 

10 tháng 12 2023

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: ΔABD=ΔEBD

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

Xét ΔDAF và ΔDEC có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DF=DC

Do đó: ΔDAF=ΔDEC

=>AF=CE

c: Ta có: ΔDAF=ΔDEC

=>\(\widehat{DAF}=\widehat{DEC}\)

mà \(\widehat{DEC}=90^0\)

nên \(\widehat{DAF}=90^0\)

Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)

=>\(\widehat{BAF}=90^0+90^0=180^0\)

=>B,A,F thẳng hàng

Xét ΔBFC có BA/AF=BE/EC

nên AE//FC