Không sử dụng bảng số và máy tính, hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần: sin65; cos75; sin70; cos18; sin79
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.6
a) \(\cos14^0=\sin76^0\)
\(\cos87^0=\sin3^0\)
Do đó: \(\cos87^0< \sin47^0< \cos14^0< \sin78^0\)
b) \(\cot25^0=\tan65^0\)
\(\cot38^0=\tan52^0\)
Do đó: \(\cot38^0< \tan62^0< \cot25^0< \tan73^0\)
4:
\(cos75=sin15;cos18=sin72\)
\(15< 65< 70< 72\)
=>\(sin15< sin65< sin70< sin72\)
=>\(cos75< sin65< sin70< cos18\)
5:
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC=BC/2=6cm
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2+6^2=10^2\)
=>HA2=64
=>HA=8(cm)
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot8\cdot12=4\cdot12=48\left(cm^2\right)\)
b: Xét ΔAHB vuông tại H có
\(sinB=\dfrac{AH}{AB}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
=>\(\widehat{C}\simeq53^0\)
Ta có : \(\tan25=\cot65\)
\(\cot22< \cot50< \cot65< \cot73\)
\(\Rightarrow\cot22< \cot50< \tan25< \cot73\)
a, Ta có: cos 88 0 < sin 40 0 (= cos 50 0 ) < cos 28 0 < sin 65 0 (= cos 25 0 ) < cos 20 0
b, Ta có: cot 67 0 18 ' (= tan 22 0 42 ' ) < tan 32 0 48 ' < tan 56 0 32 ' < cot 28 0 36 ' (= tan 61 0 24 ' )
a) Ta có: sin30=cos60, sin50=cos40
Mà cos30 < cos38 < cos40 < cos60 < cos80
Nên cos30 < cos38 < sin50 < sin30 < cos80
b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)
và: sin49=cos41 => cos30 < sin49 (2)
Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)
Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63
TA CÓ \(\sin30\)= \(\cos60\)
\(\sin50=\cos40\)
---->> \(\cos30< \cos38< \cos40< \cos60< \cos80\)
------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)
Cái kia làm tương tự nhoa
Bạn xin 1 cái k
\(\cot90^0=\tan0^0< \cot61^0=\tan29^0< \tan32^0< \tan50^0< \tan72^0=\cot18^0\)
Ta có: cotg25o = tg65o; cotg38o = tg52o.
Vậy: cotg38o < tg62o < cotg25o < tg73o
Ta đổi :
cos75 = sin(90-75) = sin15
cos18 = sin(90-18) = sin72
Vì 15 < 65 < 70 < 72 < 79
Nên sin15 < sin 65 < sin70 < sin72 < sin79
Vậy cos75 < sin65 < sin 70 < cos18 < sin79