cho tam giác ABC vuông tại A biết AB = 3cm BC = 5cm , Từ B kẻ đường thẳng vuông góc với BC , đường thẳng này cắt đường thẳng AC tại D
vẽ hình giúp tớ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
b: BC=căn 3^2+4^2=5cm
Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=5/7
=>DC=20/7cm
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
b, Vì AI là trung tuyến ứng ch BC nên \(AI=\dfrac{1}{2}BC=2,5\left(cm\right)\)
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12}{5}=2,4\left(cm\right)\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>AC=4(cm)
Xét ΔBCD vuông tại B có BA là đường cao
nên \(BA^2=AC\cdot AD\)
=>\(4\cdot AD=3^2=9\)
=>AD=2,25(cm)
b: ΔBAC vuông tại A có AE là đường cao
nên \(BE\cdot BC=BA^2\left(1\right)\)
Xét ΔBAD vuông tại A có AF là đường cao
nên \(BF\cdot BD=BA^2\left(2\right)\)
Từ (1),(2) suy ra \(BE\cdot BC=BF\cdot BD\)
c: BE*BC=BF*BD
=>\(\dfrac{BE}{BD}=\dfrac{BF}{BC}\)
Xét ΔBEF vuông tại B và ΔBDC vuông tại B có
\(\dfrac{BE}{BD}=\dfrac{BF}{BC}\)
Do đó: ΔBEF đồng dạng với ΔBDC
=>\(\widehat{BFE}=\widehat{BCD}\)