K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

A B C D E K

Ta có : Góc DAB = góc CAE = 90 độ => góc DAB + góc BAC = góc CAE + góc BAc

hay góc DAC = góc EAB 

Xét tam giác ADC và tam giác ABE có : 

AD = AB ; AC = AE ; góc DAC = góc EAB

=> tam giác ADC = tam giác ABE => DC = BE

Vì tam giác ADC = tam giác ABE nên góc AEB = góc ACD

mà góc AKE = góc BKC (đối đỉnh)  , góc AKE + góc AEB = 90 độ

=> góc BKC + góc AEB = 90 độ hay góc BKC + góc ACD = 90 độ

=> góc DC vuông góc BE

9 tháng 12 2016

Vì góc DAB=góc EAC => DÂB + BÂC = EÂC + BÂC

=> tam giác ADC = tam giác ABE (c.g.c)

=> DC = BE (dpcm)

+) tam giác AEK ( Â = 90 độ )

=> góc AEK + góc AKE = 90 độ

mà Góc AKE = góc BKC ( đ đỉnh ) và góc ACD = góc AEK ( tam giác ADC = tam giác AEB )

nên góc BKC + góc AcD = 90 độ

=> DC vuông góc với BE ( đpcm )

 

8 tháng 12 2015

A B C D E K H

Xét ΔDAC và ΔBAE có

AD=AB

góc DAC=góc BAE

AC=AE

=>ΔDAC=ΔBAE

=>DC=BE

10 tháng 3 2020

D A E B C

Ta có : \(\widehat{DAB}=\widehat{CAE}=90^0\Rightarrow\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)

hay \(\widehat{DAC}=\widehat{EAB}\)

Xét \(\Delta ADC\)và \(\Delta ABE\)có :

AD = AB

\(\widehat{DAC}=\widehat{EAB}\)

AC = AE

\(\Rightarrow\Delta ADC=\Delta ABE\left(c.g.c\right)\Rightarrow DC=BE\)

Vì tam giác ADC = tam giác ABE nên \(\widehat{AEB}=\widehat{ACD}\)

mà \(\widehat{AKE}=\widehat{BKC}\left(doi-dinh\right),\widehat{AKE}+\widehat{AEB}=90^0\)

\(\Rightarrow\widehat{BKC}+\widehat{AEB}=90^0\) hay góc \(\widehat{BKC}+\widehat{ACD}=90^0\)

\(\Rightarrow DC\perp BE\)

31 tháng 10 2020

chữ K ở đâu vậy

18 tháng 8 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

∠DAC = ∠DAB + ∠BAC = 90o + ∠BAC

∠BAE = ∠BAC + ∠CAE = ∠BAC + 90o

⇒ ∠DAC = ∠BAE

Xét ΔABE và ΔADC, ta có:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

19 tháng 1 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi giao điểm DC và AB là H, giao điểm của CD và BE là K

Ta có: ΔABE = ΔADC (cmt)

⇒ ∠ABE = ∠ADC (hai góc t.ư)

hay ∠HBK = ∠ADH

+ ΔADH và ΔBKH đều có tổng ba góc trong mỗi tam giác bằng 180o nên có:

∠ADH + ∠DAH + ∠AHD = ∠BKH + ∠KHB + ∠HBK

Mà ∠AHD = ∠BHK (hai góc đối đỉnh)

∠ADH = ∠HBK (chứng minh trên)

Suy ra ∠DAH = ∠HKB

Mà ∠DAH = 90o nên ∠HKB = 90o

⇒ DC ⊥ BE (điều phải chứng minh)

28 tháng 6 2016

D A B C E

a) Xét 2 tam giác DAC và BAE, có:

    DA = BA (gt)                             (1)

    AC = AE (gt)                             (2)

Lại có: ^DAB = ^CAE = \(90^0\) (do AD vuông góc với AB, AE vuông góc với AC)

=>  ^DAB + ^BAC = ^CAE + ^BAC

hay ^DAC = ^BAE                          (3)

Từ (1), (2) và (3), ta suy ra: \(\Delta\)DAC = \(\Delta\)BAE (c.g.c)

=>  DC = BE (2 cạnh tương ứng)

b) Gọi giao điểm của BE và DC là O, giao điểm của AB và DC là I

Ta có: ^DIA = ^BIO (đối đỉnh)

          ^ADC = ^ABE (2 góc tương ứng do tg DAC = tg BAE)

Mà ^DIA + ^ADC = \(90^0\) (tam giác DAI vuông tại A)

 =>  ^BIO + ^ABE = \(90^0\)

=>  ^BOI = \(90^0\) 

=>  DC vuông góc với BE