K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 1

Với x dương, ta có đánh giá:

\(\dfrac{x}{1+x^2}\le\dfrac{36x+3}{50}\)

Thật vậy, BĐT tương đương:

\(\left(x^2+1\right)\left(36x+3\right)\ge50x\)

\(\Leftrightarrow36x^3+3x^2-14x+3\ge0\)

\(\Leftrightarrow\left(3x-1\right)^2\left(4x+3\right)\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{10a}{1+a^2}+\dfrac{10b}{1+b^2}+\dfrac{10c}{1+c^2}\le10.\dfrac{36\left(a+b+c\right)+9}{50}=9\)

Dấu "=" xảy ra khi \(a=b=c=1\)

25 tháng 6 2021

Ta có: \(a^2-b=b^2-c\Leftrightarrow a^2-b^2=b-c\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\Rightarrow a+b=\frac{b-c}{a-b}\)

Tương tự CM được: \(b+c=\frac{c-a}{b-c}\) và \(c+a=\frac{a-b}{c-a}\)

Khi đó:

\(\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)\)

\(=\left(\frac{a-b}{c-a}+1\right)\left(\frac{c-a}{b-c}+1\right)\left(\frac{b-c}{a-b}+1\right)\)

\(=\frac{c-b}{c-a}\cdot\frac{b-a}{b-c}\cdot\frac{a-c}{a-b}=-1\)

25 tháng 6 2021

Vì a2 - b = b2 - c = c2 - a

Ta có a2 - b = b2 - c

=> (a - b)(a + b) = b - c

=> a + b + 1 = \(\frac{a-c}{a-b}\)

Tương tự ta có : b + c + 1 = \(\frac{b-a}{b-c}\)

a + c + 1 =\(\frac{b-c}{a-c}\)

Khi đó (a + b + 1)(b + c + 1)(a + c + 1) = \(\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{b-c}{a-c}=-1\)(đpcm) 

25 tháng 6 2021

Ta có:\(a^2-b=b^2-c\)

\(\Leftrightarrow a^2-b^2=b-c\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)

\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)

\(\Leftrightarrow a+b+1=\frac{b-c}{a-b}+1\)

\(\Leftrightarrow a+b+1=\frac{a-c}{a-b}\)

Cmtt ta có:

\(\hept{\begin{cases}b^2-c=c^2-a\Leftrightarrow b+c+1=\frac{b-a}{b-c}\\c^2-a=a^2-b\Leftrightarrow c+a+1=\frac{c-b}{c-a}\end{cases}}\)

\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-c}{b-a}.\frac{c-b}{c-a}=-1\)

Cre:mạng 

18 tháng 2 2019

Thay \(4=4\left(ab+ac+bc\right)\) vì \(ab+ac+bc=1\)=> \(10a^2+10b^2+c^2\ge4\left(ab+ac+bc\right)\)\(\Leftrightarrow20a^2+20b^2+2c^2-8ac-8bc-8ac\ge0\Leftrightarrow\left(16a^2-8ac+c^2\right)+\left(16b^2-8bc+c^2\right)\)

\(+\left(4a^2-8ab+4b^2\right)\)\(\Leftrightarrow\left(4a-c\right)^2+\left(4b-c\right)^2+\left(2a-2b\right)^2\ge0\)vì bất đẳng thức cuối luôn đúng nên bất đẳng thức đầu đúng ( đpcm ). Dấu "=" xảy ra khi 4a=4b=c

18 tháng 2 2019

tích mình vs nha ><