K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 12 2018

ĐKXĐ:...

Ta có \(21-x^2-4x=25-\left(x+2\right)^2\le25\)

Đặt \(\sqrt{21-x^2-4x}=t\Rightarrow0\le t\le5\) pt trở thành:

\(21-t^2+t+2m-1=0\Leftrightarrow f\left(t\right)=t^2-t-2m-20=0\) (1)

Để pt đã cho có 4 nghiệm phân biệt thì (1) có 2 nghiệm phân biệt thỏa mãn \(0\le t_1< t_2< 5\)

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\f\left(0\right)\ge0\\f\left(5\right)>0\\0< \dfrac{S}{2}< 5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1+4\left(2m+20\right)>0\\-2m-20\ge0\\25-5-2m-20>0\\0< \dfrac{1}{2}< 5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{-81}{8}\\m\le-10\\m< 0\\0< \dfrac{1}{2}< 5\end{matrix}\right.\)

\(\Rightarrow\dfrac{-81}{8}< m< 0\)

10 tháng 1 2019

Ta có 21−x2−4x=25−(x+2)2≤2521−x2−4x=25−(x+2)2≤25

Đặt √21−x2−4x=t⇒0≤t≤521−x2−4x=t⇒0≤t≤5 pt trở thành:

21−t2+t+2m−1=0⇔f(t)=t2−t−2m−20=021−t2+t+2m−1=0⇔f(t)=t2−t−2m−20=0 (1)

Để pt đã cho có 4 nghiệm phân biệt thì (1) có 2 nghiệm phân biệt thỏa mãn 0≤t1<t2<50≤t1<t2<5

⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩Δ>0f(0)≥0f(5)>00<S2<5⇒{Δ>0f(0)≥0f(5)>00<S2<5 ⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩1+4(2m+20)>0−2m−20≥025−5−2m−20>00<12<5⇒{1+4(2m+20)>0−2m−20≥025−5−2m−20>00<12<5 ⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩m>−818m≤−10m<00<12<5⇒{m>−818m≤−10m<00<12<5

⇒−818<m<0

NV
14 tháng 12 2020

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

NV
14 tháng 12 2020

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

25 tháng 11 2023

Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.

mình trình bày hơi dài mong bạn thông cảm loading...  

29 tháng 3 2017

18 tháng 11 2017

18 tháng 5 2018

Đáp án C

Phương pháp:

Đặt 2 x = t t > 0 , đưa về phương trình bậc 2 ẩn t, tìm điều kiện của phương trình bậc 2 ẩn t để phương trình ban đầu có 2 nghiệm phân biệt.

Cách giải: Đặt 2 x = t t > 0 khi đó phương trình trở thành  t 2 − 2 m t + m + 2 = 0 *

Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) có 2 nghiệm dương phân biệt.

Khi  đó:  Δ ' > 0 S > 0 P > 0 ⇔ m 2 − m − 2 > 0 2 m > 0 m + 2 > 0 ⇔ m > 2 m < − 1 m > 0 m > − 2 ⇒ m > 2

Chú ý và sai lm: Rất nhiều học sinh sau khi đặt ẩn phụ thì quên mất điều kiện t > 0, dẫn đến việc chỉ đi tìm điều kiện đề phương trình (*) có 2 nghiệm phân biệt.

29 tháng 12 2017

Đáp án D

Vậy để bất phương trình có nghiệm thực thì m ≥ 1