Rút gọn các phân thức :
a, \(\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)
b, \(\frac{m^4-m}{2m^2+2m+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a^2m-a^2n-b^2n+b^2m}{a^2+b^2}=\frac{a^2\left(m-n\right)+b^2\left(m-n\right)}{a^2+b^2}\)
\(=\frac{\left(m-n\right)\left(a^2+b^2\right)}{a^2+b^2}=m-n\)
b) \(\frac{\left(ab+bc+cd+ad\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-b\right)}\)
\(=\frac{\left[b.\left(a+c\right)+d.\left(a+c\right)\right].abcd}{ac+bc+da+db+ab-b^2-ca+bc}\)
\(=\frac{\left(a+c\right)\left(d+b\right)abcd}{2bc+da+db+ab-b^2}\)
Cho phân thức \(A=\frac{x^5+2x^4+2x^3-4x^2+3x+6}{x^2+2x-8}\)
a) Tìm tập xác định của A
b) Tìm các giá trị của x để A = 0
c) Rút gọn A
a) \(\dfrac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}=\dfrac{\left(a-b\right)\left(c-d\right)}{\left(a-b\right)\left(a+b\right)\left(c-d\right)\left(c+d\right)}=\dfrac{1}{\left(a+b\right)\left(c+d\right)}\)
b) \(\dfrac{m^4-m}{2m^2+2m+2}=\dfrac{m\left(m^3-1\right)}{2\left(m^2+m+1\right)}=\dfrac{m\left(m-1\right)\left(m^2+m+1\right)}{2\left(m^2+m+1\right)}=\dfrac{m\left(m-1\right)}{2}\)
c) \(\dfrac{ab^2+a^3-a^2b}{a^3+b^3}=\dfrac{a\left(b^2+a^2-ab\right)}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\dfrac{a}{a+b}\)
\(BT=\frac{a^2\left(b-c\right)+b^2c-b^2a+c^2a-c^2b}{a^4\left(b^2-c^2\right)+b^4c^2-b^4a^2+c^4a^2-c^4b^2}\)
\(=\frac{a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)}{a^4\left(b^2-c^2\right)+b^2c^2\left(b^2-c^2\right)-\left(b^4-c^4\right)a^2}\)
\(=\frac{\left(b-c\right)\left(a^2+bc-a\left(b+c\right)\right)}{\left(b^2-c^2\right)\left(a^4+b^2c^2-a^2\left(b^2+c^2\right)\right)}\)
\(=\frac{\left(a-b\right)\left(a-c\right)}{\left(b+c\right)\left(a^2-b^2\right)\left(a^2-c^2\right)}\)
\(=\frac{1}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
= \(\frac{a^2\left(b-c\right)+b^2c-c^2b-a\left(b^2-c^2\right)}{a^4\left(b^2-c^2\right)+b^4c^2-c^4b^2-a^2\left(a^4-b^4\right)}\)
= \(\frac{\left(b-c\right)\left(a-b\right)\left(c-a\right)}{\left(b^2-c^2\right)\left(a^2-b^2\right)\left(c^2-a^2\right)}\)
= \(\frac{1}{\left(b+c\right)\left(a+b\right)\left(c+a\right)}\)
a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)
b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)
c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)
\(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)
d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{^{^{ }}a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
=\(\frac{a^2b-a^2c+b^2c-b^2a+c^2a-c^2b}{a^4b^2-a^4c^2+b^4c^2-b^4a^2+c^4a^2-c^4b^2}\)
*Rút gọn âm và dương đối nhau ( VD: \(a^2\)và\(-a^2\)), còn lại bạn tự tìm thêm nhé :)
\(\frac{b-c+c-a+a-b}{b^2-c^2+c^2-a^2+a^2-b^2}\)
Ta lại rút gọn các cặp đối nhau ( như trên VD)
Kết quả cuối cùng là 0
Đặt biểu thức đã cho là A
Xét tử: \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)\)
\(=\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+c^2\left(a-b\right)\)
\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)
\(=ab\left(a-b\right)-\left(a-b\right)\left(ca+bc\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ca-bc+c^2\right)\)\(=\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
Xét mẫu : làm tương tự như trên ta được
\(a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)=\left(a^2-b^2\right)\left(a^2-c^2\right)\left(b^2-c^2\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)\left(a+c\right)\left(b-c\right)\left(b+c\right)\)
\(\Rightarrow A=\frac{1}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}=\frac{\left(b-a\right)\left(d-c\right)}{\left(b-a\right)\left(b+a\right)\left(d-c\right)\left(d+c\right)}=\frac{1}{\left(a+b\right)\left(c+d\right)}\)
\(\frac{m^4-m}{2m^2+2m+2}=\frac{m\left(m^3-1\right)}{2m^2+2m+2}=\frac{m\left(m-1\right)\left(m^2+m+1\right)}{2\left(m^2+m+1\right)}=\frac{m\left(m-1\right)}{2}\)