K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

\(x^4-x^3+2x^2-x+1=0\)

\(\Rightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)

\(\Rightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)

\(\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

Mà \(\hept{\begin{cases}x^2+1>0\forall x\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)>0\forall x}\)

Vậy ko tồn tại x thỏa mãn \(x^4-x^3+2x^2-x+1=0\)

2 tháng 12 2018

\(x^4-x^3+2x^2-x+1=x^4-x^3+x^2+x^2-x+1\)

\(=x^2.\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2+1\right).\left(x^2-x+1\right)\)

vì (x2+1) \(\ge1\)

và \(x^2\ge x\Rightarrow x^2-x+1\ge1\)

=> \(\left(x^2+1\right).\left(x^2-x+1\right)\ge1\Rightarrowđpcm\)

16 tháng 7 2016

mk ko biết

Mình mới hok lớp 6

16 tháng 7 2016

Ta biến đổi phương trình thành:

\(\left(x^4+2x^2+1\right)-\left(x^3+x\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-x\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1-x\right)=0\)

Với mọi \(x\in R\)ta có \(x^2+1>0\)

và \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Cả 2 nhân tử ở vế trái đều dương nên tích không thể bằng 0. Hay không tồn tại x thỏa mãn đề bài.

Ta thấy \(a.a\) \(không\) \(bằng\) \(2\)

⇒ Không số nào có bình phương bằng 2

⇒ Không tồn tại số hửa tỉ x thoả mãn x2=2

⇒ (đpcm)

25 tháng 5 2019

Giả sử tồn tại các số x,y nguyên

=>\(x^4\ge0\)

Ta có \(x^4+y^3+4=0\)<=> \(x^4=-y^3-4\)

Mà \(x^4\ge\) ;\(-y^3-4< 0\)(vô lý)

Nên không tồn tại số nguyễn x, y thỏa mãn \(x^4+y^3+4=0\)

26 tháng 5 2019

Bạn ơi, mình hỏi là số nguyên chứ ko phải nguyên dương nên -y3-4 chưa chắc đã bé hơn 0 nhé.

24 tháng 7 2020

Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)

\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)

Mặt khác áp dụng BĐT Cauchy Schwarz:

\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)

Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3